-- | The Grid module just contains the Grid type and two constructors -- for it. We hide the main Grid constructor because we don't want -- to allow instantiation of a grid with h <= 0. module Grid where import qualified Data.Array.Repa as R import Test.QuickCheck (Arbitrary(..), Gen, Positive(..)) import Cube (Cube(Cube), find_containing_tetrahedra) import FunctionValues import Point (Point) import ScaleFactor import Tetrahedron (polynomial) import Values (Values3D, dims, empty3d, zoom_shape) -- | Our problem is defined on a Grid. The grid size is given by the -- positive number h. The function values are the values of the -- function at the grid points, which are distance h from one -- another in each direction (x,y,z). data Grid = Grid { h :: Double, -- MUST BE GREATER THAN ZERO! function_values :: Values3D } deriving (Eq, Show) instance Arbitrary Grid where arbitrary = do (Positive h') <- arbitrary :: Gen (Positive Double) fvs <- arbitrary :: Gen Values3D return (make_grid h' fvs) -- | The constructor that we want people to use. If we're passed a -- non-positive grid size, we throw an error. make_grid :: Double -> Values3D -> Grid make_grid grid_size values | grid_size <= 0 = error "grid size must be positive" | otherwise = Grid grid_size values -- | Creates an empty grid with grid size 1. empty_grid :: Grid empty_grid = Grid 1 empty3d -- | Returns a three-dimensional list of cubes centered on the grid -- points of g with the appropriate 'FunctionValues'. cubes :: Grid -> [[[Cube]]] cubes g | xsize == 0 || ysize == 0 || zsize == 0 = [[[]]] | otherwise = [[[ Cube (h g) i j k (make_values fvs i j k) | i <- [0..xsize]] | j <- [0..ysize]] | k <- [0..zsize]] where fvs = function_values g (xsize, ysize, zsize) = dims fvs -- | Takes a grid and a position as an argument and returns the cube -- centered on that position. If there is no cube there (i.e. the -- position is outside of the grid), it will throw an error. cube_at :: Grid -> Int -> Int -> Int -> Cube cube_at g i j k | i < 0 = error "i < 0 in cube_at" | j < 0 = error "j < 0 in cube_at" | k < 0 = error "k < 0 in cube_at" | otherwise = let zsize = length (cubes g) in if k >= zsize then error "k >= xsize in cube_at" else let ysize = length ((cubes g) !! k) in if j >= ysize then error "j >= ysize in cube_at" else let xsize = length (((cubes g) !! k) !! j) in if i >= xsize then error "i >= xsize in cube_at" else (((cubes g) !! k) !! j) !! i -- The first cube along any axis covers (-h/2, h/2). The second -- covers (h/2, 3h/2). The third, (3h/2, 5h/2), and so on. -- -- We translate the (x,y,z) coordinates forward by 'h/2' so that the -- first covers (0, h), the second covers (h, 2h), etc. This makes -- it easy to figure out which cube contains the given point. calculate_containing_cube_coordinate :: Grid -> Double -> Int calculate_containing_cube_coordinate g coord -- Don't use a cube on the boundary if we can help it. This -- returns cube #1 if we would have returned cube #0 and cube #1 -- exists. | coord == offset && (xsize > 0 && ysize > 0 && zsize > 0) = 1 | otherwise = (ceiling ( (coord + offset) / cube_width )) - 1 where (xsize, ysize, zsize) = dims (function_values g) cube_width = (h g) offset = cube_width / 2 -- | Takes a 'Grid', and returns a 'Cube' containing the given 'Point'. -- Since our grid is rectangular, we can figure this out without having -- to check every cube. find_containing_cube :: Grid -> Point -> Cube find_containing_cube g p = cube_at g i j k where (x, y, z) = p i = calculate_containing_cube_coordinate g x j = calculate_containing_cube_coordinate g y k = calculate_containing_cube_coordinate g z {-# INLINE zoom_lookup #-} zoom_lookup :: Grid -> ScaleFactor -> a -> (R.DIM3 -> Double) zoom_lookup g scale_factor _ = zoom_result g scale_factor {-# INLINE zoom_result #-} zoom_result :: Grid -> ScaleFactor -> R.DIM3 -> Double zoom_result g (sfx, sfy, sfz) (R.Z R.:. i R.:. j R.:. k) = f p where i' = (fromIntegral i) / (fromIntegral sfx) j' = (fromIntegral j) / (fromIntegral sfy) k' = (fromIntegral k) / (fromIntegral sfz) p = (i', j', k') :: Point c = find_containing_cube g p t = head (find_containing_tetrahedra c p) f = polynomial t zoom :: Grid -> ScaleFactor -> Values3D zoom g scale_factor | xsize == 0 || ysize == 0 || zsize == 0 = empty3d | otherwise = R.force $ R.traverse arr transExtent (zoom_lookup g scale_factor) where arr = function_values g (xsize, ysize, zsize) = dims arr transExtent = zoom_shape scale_factor