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Local quasi-interpolation by cubic C1 splines on type-6
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We describe an approximating scheme based on cubic C1 splines on type-6 tetrahedral partitions us-
ing data on volumetric grids. The quasi-interpolating piecewise polynomials are directly determined by
setting their Bernstein–Bézier coefficients to appropriate combinations of the data values. Hence, each
polynomial piece of the approximating spline is immediately available from local portions of the data,
without using prescribed derivatives at any point of the domain. The locality of the method and the uni-
form boundedness of the associated operator provide an error bound, which shows that the approach can
be used to approximate and reconstruct trivariate functions. Simultaneously, we show that the derivatives
of the quasi-interpolating splines yield nearly optimal approximation order. Numerical tests with up to
17 × 106 data sites show that the method can be used for efficient approximation.

Keywords: trivariate splines; quasi-interpolation; Bernstein–Bézier form; type-6 tetrahedral partitions;
approximation order.

1. Introduction

We investigate the problem of constructing appropriate non-discrete models from given discrete data
on volumetric grids. The development of such trivariate models approximating given data is important
because it is the theoretical basis for many applications, such as scientific visualization, medical imaging
and numerical simulation. A standard example is trilinear interpolation, i.e. roughly speaking, interpol-
ation at the volumetric grid points based on the straightforward tensor-product extension of univariate
linear interpolating splines. The simplicity of this local spline model and the fact that it approximates
sufficiently smooth functions with order two are the main theoretical reasons for its frequent use in
the above mentioned applications (cf. Bajaj, 1999; Marschner & Lobb, 1994; Meissner et al., 2000;
Parker et al., 1998; Theußl et al., 2002). Although based on piecewise cubic polynomials, this continu-
ous model is not smooth, while it is known that the existence and certain approximation properties of
the derivatives would be advantageous for practical purposes. On the other hand, tri-quadratic and tri-
cubic tensor-product splines can be used to construct smooth models of the data. However, these are
piecewise polynomials of higher degrees—six and nine, respectively, and both schemes usually require
(approximate) derivative data at certain prescribed points. This raises the natural problem of constructing
an alternative, local and smooth spline model based on piecewise cubic polynomials, which uses only
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FIG. 1. Type-6 tetrahedral partitions � are obtained from subdividing each box into 24 congruent tetrahedra (left). The restrictions
to certain planes parallel to the three coordinate planes are four-directional meshes (right).

data values on the volumetric grid (no prescribed derivatives), and simultaneously approximates smooth
functions as well as their derivatives. The aim of this paper is to develop a quasi-interpolation method,
which is the first solution with these properties.

Our approach is based on the piecewise Bernstein–Bézier form (BB-form) of cubic C1 splines on
type-6 tetrahedral partitions. These are uniform tetrahedral partitions of the 3D domain obtained by
subdividing boxes into 24 tetrahedra using six planes (see Fig. 1). Smooth splines on these types of
partitions have recently gained some interest in multivariate spline theory. A structural analysis for any
degree was given in Hangelbroek et al. (2004), while macro-element constructions based on degree
five and six super-splines were developed in Lai & Le Méhauté (2004) and Schumaker & Sorokina
(2005). One of the reasons for the interest is that the type-6 tetrahedral partition is a natural 3D ana-
logue of the well-known bivariate four-directional mesh (Chui, 1988; Davydov & Zeilfelder, 2004;
Lai & Schumaker, 2006; Nürnberger & Zeilfelder, 2000; Sablonnière, 2003; Sorokina & Zeilfelder,
2005). Another reason results from a comparison with smooth trivariate splines on more general par-
titions (Alfeld, 1984; Alfeld & Schumaker, 2005a,b,c; Alfeld et al., 1992, 1993; Lai & Schumaker,
2006; Nürnberger et al., 2005b; Sorokina, 2004; Sorokina & Worsey, submitted; Worsey & Farin, 1987;
Worsey & Piper, 1988). These spaces are usually extremely complex; however, the structure of the
spaces over uniform type partitions (cf. Hangelbroek et al., 2004; Hecklin et al., 2006; Schumaker &
Sorokina, 2004, 2005) is somewhat simplified, sometimes providing the possibility of using lower-
degree smooth splines. This is important from a practical point of view for the above mentioned ap-
plications. However, satisfying all smoothness conditions in the various spatial directions still remains
complicated.

We take advantage of the uniform structure of type-6 tetrahedral partitions, which implies that certain
Bernstein–Bézier coefficients (BB-coefficients) of the C1 splines have to be simple averages of certain
other BB-coefficients. Roughly speaking, the basic idea of the new approach is as follows. Given data
on a volumetric grid, we consider appropriate local portions of the data and set each BB-coefficient
of the approximating cubic spline directly by applying some natural and simple averaging rules. The
setting of the BB-coefficients is done in such a way that the C1 smoothness of the resulting spline is
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guaranteed, while certain approximation properties hold. This procedure allows an efficient computation
of the splines, and since we only need data values to perform the algorithm, (approximate) derivatives
are not required at any point in the 3D domain. This stands in contrast to certain finite-element ap-
proaches, and some more recent macro-element methods as, for instance, the quintic C1 Hermite inter-
polant in Alfeld (1984). Another difference from the approaches in Alfeld (1984), Alfeld & Schumaker
(2005a,b,c), Nürnberger et al. (2005b), Worsey & Farin (1987) and Worsey & Piper (1988) is that in
our method, we do not split any tetrahedra of the underlying partition. Moreover, by the nature of our
algorithm, the splines are directly available from the data. Hence, neither the construction of (minimal)
determining sets (cf. Lai & Schumaker, 2006; Nürnberger et al., 2005b; Schumaker & Sorokina, 2004,
2005) nor an intermediate step making use of certain locally supported splines is needed in our approach.
It falls into the class of quasi-interpolation methods for trivariate splines. More precisely, we show that
the scheme is associated with a quasi-interpolation operator, which is uniformly bounded, local and sat-
isfies certain reproduction properties. Using this, we can guarantee the stability of the approach and we
derive error bounds, which show that the splines and their derivatives simultaneously approximate data
coming from smooth functions. As a non-standard phenomenon in approximation theory, we observe
that the approximation order of the splines and their derivatives is the same, which in the latter case is
nearly optimal. Although we use the BB-form mainly as a theoretical tool here, it should be pointed out
that the Bernstein–Bézier techniques (BB-techniques) also play an important role in a practical context
since they allow efficient representation, computation, evaluation and visualization of the splines (cf. de
Boor, 1987; Farin, 1986; Nürnberger et al., 2005a; Rössl et al., 2004; Schlosser et al., 2005). In fact, we
use these techniques in the implementations of our method.

The paper is organized as follows: In Section 2, we give some preliminaries on the BB-form of cubic
C1-splines on type-6 tetrahedral partitions and describe the smoothness conditions of the spaces in a
convenient form. Section 3 is devoted to our quasi-interpolating scheme. In Section 4, we show that the
scheme leads to cubic splines which are globally smooth. Some useful properties of the corresponding
quasi-interpolation operator are discussed in Section 5. These results are used in Section 6, where we
provide error bounds for the quasi-interpolating splines and their derivatives. In Section 7, we provide
numerical tests involving up to 17 × 106 samples, and conclude the paper with several remarks.

2. BB-form of cubic C1 splines on type-6 partitions

In this preliminary section, we define type-6 tetrahedral partitions �, recall some facts on the piecewise
BB-form of trivariate cubic splines on � and describe the C1 smoothness conditions for these spaces.

For a given grid size h > 0 and integers n, m, r , let

V := {vi jk = (ih, jh, kh), i = 0, . . . , n + 1, j = 0, . . . , m + 1, k = 0, . . . , r + 1}

be the set of (n + 2) × (m + 2) × (r + 2) grid points. Each interior grid point vi jk , for i /∈ {0, n + 1},
j /∈ {0, m + 1} and k /∈ {0, r + 1}, lies in the centre of the box

Qi jk := [(2i − 1)h/2, (2i + 1)h/2] × [(2 j − 1)h/2, (2 j + 1)h/2] × [(2k − 1)h/2, (2k + 1)h/2],

and the collection of these boxes forms a partition

♦ := {Qi jk : i = 1, . . . , n, j = 1, . . . , m, k = 1, . . . , r}
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of the rectangular, volumetric domain

Ω = [h/2, (2n + 1)h/2] × [h/2, (2m + 1)h/2] × [h/2, (2r + 1)h/2]

⊆ [0, (n + 1)h] × [0, (m + 1)h] × [0, (r + 1)h] =: Ω̃.

In the following, we call the boxes Qi jk with i ∈ {1, n} or j ∈ {1, m} or k ∈ {1, r} boundary boxes, and
the square faces of these boxes which lie on the boundary of Ω boundary square faces. Otherwise, we
call them interior boxes and interior square faces, respectively.

For building a suitable tetrahedral partition from ♦, we subdivide the boxes as follows. In each
box Qi jk , we first draw in the two diagonals of each of the six faces of Qi jk , and then connect the
centre vi jk of Qi jk with the eight vertices of Qi jk as well as with the centres of the six faces of Qi jk .
Now each box can be considered as being subdivided into six pyramids, where each pyramid is further
decomposed in four tetrahedra of the same form, see Fig. 1. Hence, this procedure splits each box Qi jk

into 24 congruent tetrahedra yielding a tetrahedral partition � of Ω , which consists of 24 × n × m × r
tetrahedra. This partition � is called a type-6 tetrahedral partition because it is alternatively described
as the result of slicing each box Qi jk ∈ ♦ with six different planes. The restriction of � to any plane
E containing a face of some box in ♦ is a (bivariate) four-directional mesh of the intersecting square
domain E ∩ Ω (see Fig. 1, right). Therefore, � can be considered as a trivariate generalization of the
four-directional mesh well-known in the bivariate spline theory.

In the following, we consider the space of cubic C1 splines on � defined as

S = {s ∈ C1(Ω): s|T ∈ P3, for all T ∈ �}, (2.1)

where C1(Ω) is the set of continuously differentiable functions on Ω , and P3 denotes the space of
trivariate polynomials of total degree three. Note that it is obvious that S is a subspace of a simpler
space of cubic continuous splines on � defined by S0 = {s ∈ C(Ω): s|T ∈ P3, for all T ∈ �}, where
C(Ω) denotes the set of continuous functions on Ω .

Throughout the paper, we use the piecewise BB-form of the splines on � (cf. de Boor, 1987; Chui,
1988; Farin, 1986; Lai & Schumaker, 2006; Nürnberger & Zeilfelder, 2000). Given a spline s ∈ S,
each of its polynomial pieces p = s|T ∈ P3 on a tetrahedron T = 〈v0, v1, v2, v3〉 ∈ � with vertices
v0, v1, v2 and v3 is determined by

p =
∑

i+ j+k+�=3

ci jk�BT
i jk�, (2.2)

where

BT
i jk� = 6

i! j!k!�!
bi

0b j
1bk

2b�
3

are the cubic Bernstein polynomials on T for i + j + k + � = 3. Here, b0, b1, b2 and b3 denote the
barycentric coordinates with respect to T , that are linear trivariate polynomials determined by

bi (v j ) = δi, j , j = 0, . . . , 3,

where δi, j is the Kronecker’s symbol. It is easy to see that the Bernstein polynomials form the partition
of unity ∑

i+ j+k+�=3

BT
i jk� = 1. (2.3)
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As usual, we associate the BB-coefficient ci jk� of p in the form (2.2) with the domain point

ξi jk� := (iv0 + jv1 + kv2 + �v3)/3, i + j + k + � = 3,

in T , and we let D� be the union of the sets of domain points associated with the tetrahedra of �.
For later use, we also mention that if we denote by pi jk� the value of p ∈ P3 at the domain point
ξi jk�, i + j + k + � = 3, in T , then the unique Lagrange polynomial interpolation at these 20 points
gives

c3000 = p3000, c2100 = 1

3
p0300 − 5

6
p3000 + 3p2100 − 3

2
p1200,

c1110 = 1

3
(p3000 + p0300 + p0030) + 9

2
p1110

− 3

4
(p2100 + p1200 + p2010 + p1020 + p0210 + p0120),

(2.4)

with similar formulae for the remaining BB-coefficients of p in its representation (2.2) with respect
to T .

A well-known advantage of the BB-form is that it conveniently allows to describe smoothness condi-
tions (cf. de Boor, 1987; Chui, 1988; Farin, 1986) between the polynomial pieces of the splines on neigh-
bouring tetrahedra. Given any two (non-degenerate) tetrahedra T = 〈v0, v1, v2, v3〉, T̃ = 〈v0, v1, v2, ṽ3〉
sharing a common triangular face T ∩ T̃ = 〈v0, v1, v2〉, let s be a cubic continuous spline on T ∪ T̃ in
its piecewise BB-form (2.2): s|T = p and s|T̃ = p̃ with the corresponding BB-coefficients ci jk� and
c̃i jk�, respectively. Then s is C1 smooth across T ∩ T̃ if and only if

ci jk1 = c̃i+1 jk0b0(ṽ3) + c̃i j+1k0b1(ṽ3) + c̃i jk+1 0b2(ṽ3) + c̃i jk1b3(ṽ3), (2.5)

where i + j + k = 2. In general, there are five coefficients involved in each of these six conditions.
In Fig. 2 (right), the common triangular face T ∩ T̃ is shaded grey, the domain points associated with
the BB-coefficients involved in the smoothness conditions are shown as grey dots and the conditions
are illustrated by using thick lines and small tetrahedra with thick boundary lines. If one or two of the
barycentric coordinates of the point ṽ3 vanish, then the number of the involved coefficients is four and
three, respectively. In these cases, the smoothness conditions degenerate to lower-dimensional condi-
tions which are similar to those in the bivariate and univariate setting. Figure 2 (left) shows such an
example, where two barycentric coordinates of ṽ3 are zeros, and hence, the smoothness conditions are
similar to the univariate ones.

Throughout the paper, we consider type-6 tetrahedral partitions. The C1 smoothness conditions for
the splines from S can be described in a very simple way. We observe that for these tetrahedral partitions,
only two types of smoothness conditions illustrated in Fig. 2 do appear, and that for each of these con-
ditions, the weights in (2.5) —the barycentric coordinates of the point ṽ3—are always the same rational
numbers. Therefore, we may consider these smoothness conditions (2.8)–(2.9) as simple averaging rules
to be satisfied by the BB-coefficients of the cubic C1 splines from S. More precisely, according to the
uniform structure of �, every tetrahedron T = 〈v0, v1, v2, v3〉 ∈ � with vertices v0, v1, v2 and v3 has
one vertex, say v0, at the centre of a box Qi jk , another vertex, say v1, at the midpoint of one of the
faces of Qi jk and the two remaining vertices, v2 and v3, are vertices of Qi jk . It suffices to describe the
C1 smoothness conditions across the four (interior) triangular faces 〈v0, v1, v2〉, 〈v0, v1, v3〉, 〈v0, v2, v3〉
and 〈v1, v2, v3〉 of T . By using (2.5) and some elementary computations, we obtain that s ∈ S if and
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FIG. 2. Illustration of the six smoothness conditions determined by (2.6)–(2.7) (left) and (2.9) (right). Smoothness conditions
across the common triangular face of two neighbouring tetrahedra which degenerate to univariate smoothness conditions (with
three coefficients involved in each condition) are shown on the left, while the non-degenerate case (with five coefficients involved
in each condition) is shown on the right. In both cases, the BB-coefficients associated with domain points shown as white dots are
not involved in any smoothness conditions across the shaded triangular face, while the remaining BB-coefficients (shown as grey
dots) are involved in such conditions.

only if the following conditions for its BB-coefficients in the representation (2.2) are satisfied:

• Smoothness across F = 〈v0, v1, v2〉.
Let T̃ = 〈v0, v1, v2, ṽ3〉 be the tetrahedron sharing the face F with T . Then,

c0120 = (c0021 + c̃0021)/2, c0210 = (c0111 + c̃0111)/2,

c0300 = (c0201 + c̃0201)/2, c1110 = (c1011 + c̃1011)/2, (2.6)

c1200 = (c1101 + c̃1101)/2, c2100 = (c2001 + c̃2001)/2.

• Smoothness across F = 〈v0, v1, v3〉.
Let T̃ = 〈v0, v1, ṽ2, v3〉 be the tetrahedron sharing the face F with T . Then,

c0102 = (c0012 + c̃0012)/2, c0201 = (c0111 + c̃0111)/2,

c0300 = (c0210 + c̃0210)/2, c1101 = (c1011 + c̃1011)/2, (2.7)

c1200 = (c1110 + c̃1110)/2, c2100 = (c2010 + c̃2010)/2.

• Smoothness across F = 〈v0, v2, v3〉.
Let T̃ = 〈v0, ṽ1, v3, v4〉 be the tetrahedron sharing the face F with T . Then,

c3000 = c2100 + c̃2100 − (c2010 + c2001)/2,

c2010 = c1110 + c̃1110 − (c1020 + c1011)/2,

c2001 = c1101 + c̃1101 − (c1002 + c1011)/2,

c1020 = c0120 + c̃0120 − (c0030 + c0021)/2,

c1002 = c0102 + c̃0102 − (c0003 + c0012)/2,

c1011 = c0111 + c̃0111 − (c0012 + c0021)/2.

(2.8)

• Smoothness across F = 〈v1, v2, v3〉.
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Let T̃ = 〈ṽ0, v1, v2, v3〉 be the tetrahedron sharing the face F with T . Then,

c0120 = (c1020 + c̃1020)/2, c0102 = (c1002 + c̃1002)/2,

c0111 = (c1011 + c̃1011)/2, c0210 = (c1110 + c̃1110)/2, (2.9)

c0201 = (c1101 + c̃1101)/2, c0300 = (c1200 + c̃1200)/2.

Note that (2.6)–(2.8) characterize the smoothness conditions across the triangular faces completely
contained in a box, while (2.9) describes the smoothness conditions across the triangular faces located
between the neighbouring boxes.

Equations (2.6)–(2.9) show that for the splines from S, smoothness conditions across common tri-
angular faces of neighbouring tetrahedra in � are basically described by the means of two very simple
formulae. However, if we consider a complete type-6 tetrahedral partition �, then satisfying all the
conditions to obtain a globally C1 smooth spline is often a complex task, because a huge number of
conditions have to be simultaneously satisfied, and they cannot be considered independently. An analy-
sis of these complex relations and different formulae for the number of degrees of freedom, i.e. the
dimension of the space of C1 splines of any degree on �, are given in Hangelbroek et al. (2004). For
the reader’s convenience, we recall the following result for the particular case of cubic C1 splines on �.

THEOREM 2.1 The dimension of the spline space S is equal to

6nmr + 8(nm + nr + mr) + 6(n + m + r) + 4. (2.10)

Note that in Hangelbroek et al. (2004), non-local arguments were needed to prove the general state-
ment. However, the result of Theorem 2.1 already indicates that there is some hope that efficient local
approximation operators based on S can be constructed. This stands in contrast to cubic C1 splines on
the so-called Freudenthal partitions, which are uniform type tetrahedral partitions also obtained from ♦,
but where each box is subdivided into six subtetrahedra (see Hecklin et al., 2006).

3. Quasi-interpolation scheme

In this section, we describe our quasi-interpolation scheme. Given (m + 2) × (n + 2) × (r + 2) data
values

f (vi jk), i = 0, . . . , n + 1, j = 0, . . . , m + 1, k = 0, . . . r + 1, (3.1)

of a continuous function f at the points vi jk in V , our method is to set directly each BB-coefficient cξ =
cξ (s f ), ξ ∈ D�, in the piecewise representation (2.2) of a cubic spline s f on �. For each domain point ξ
in a tetrahedron T contained in Q = Qi jk , we use the 27 values of f at the points vi+i0 j+ j0k+k0 , where
i0, j0, k0 ∈ {−1, 0, 1}, and uniquely determine the BB-coefficient cξ of s f by building appropriate
averages of this local portion of the data. More precisely, we set

cξ :=
∑

i0, j0,k0∈{−1,0,1}
ωi0 j0k0(ξ) f

(
vi+i0 j+ j0k+k0

)
, (3.2)

where the non-negative weights ωi0 j0k0(ξ) are independent of Q and T . In this way, we uniquely deter-
mine s f |T for each T in � and, hence, the approach is completely symmetric. In the remaining part of
this section, we describe the specific choice of the weights in (3.2) defining our scheme.
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FIG. 3. The surface view of 26 boxes intersecting with an interior box Q = Qi jk . I = box Q Itself, F = Front, B = Back,
R = Right, L = Left, T = Top, and D = Down.

In order to keep these formulae and corresponding proofs as short as possible, and for a better
geometric understanding, we introduce the following notation illustrated in Fig. 3. The value f (vi jk) at
the centre vi jk of the box Q := Qi jk . Itself is abbreviated by

I := f (vi jk),

while the given values in its Front neighbouring box Qi−1 jk , Left neighbouring box Qi j−1k and Down
neighbouring box Qi jk−1, respectively, are abbreviated by

F := f (vi−1 jk), L := f (vi j−1k) and D := f (vi jk−1).

Similarly, we set

B := f (vi+1 jk), R := f (vi j+1k) and T := f (vi jk+1)

for the values in the Back, Right and Top neighbouring boxes of Q, respectively. For the given values
in the Front-Left box Qi−1 j−1k , Front-Right box Qi−1 j+1k , Front-Down box Qi−1 jk−1 and Front-Top
box Qi−1 jk+1 of Q, respectively, we use the abbreviations

FL := f (vi−1 j−1k), FR := f (vi−1 j+1k),

FD := f (vi−1 jk−1), FT := f (vi−1 jk+1),

and, similarly, we set

BL := f (vi+1 j−1k), BR := f (vi+1 j+1k),

BD := f (vi+1 jk−1), BT := f (vi+1 jk+1),

LD := f (vi j−1k−1), LT := f (vi j−1k+1),

RD := f (vi j+1k−1), RT := f (vi j+1k+1)
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for the values in its Back-Left, Back-Right, Back-Down, Back-Top, Left-Down, Left-Top, Right-Down,
Right-Top boxes, respectively. Finally, the values in the Front-Left-Down box Qi−1 j−1k−1 and Front-
Left-Top box Qi−1 j−1k+1, respectively, are denoted by

FLD := f (vi−1 j−1k−1), FLT := f (vi−1 j−1k+1),

while we set

FRD := f (vi−1 j+1k−1), FRT := f (vi−1 j+1k+1),

BLD := f (vi+1 j−1k−1), BLT := f (vi+1 j−1k+1),

BRD := f (vi+1 j+1k−1), BRT := f (vi+1 j+1k+1)

for the values in its Front-Right-Down, Front-Right-Top, Back-Left-Down, Back-Left-Top, Back-Right-
Down and Back-Right-Top boxes, respectively.

The type-6 tetrahedral partition � is symmetric in the sense that each tetrahedron in � has one
vertex at the centre vi jk of a box Q = Qi jk from ♦, another vertex at the centre of one of the faces
of Q and two other vertices coincide with vertices of that face. Since our scheme is also completely
symmetric, it suffices to consider the tetrahedron T = 〈v0, v1, v2, v3〉, where v0 = vi jk is the centre
of Q, v1 = (vi jk + vi−1 jk)/2 is the centre of the front face of Q and v2 = (vi jk + vi−1 j−1k+1)/2,
v3 = (vi jk + vi−1 j+1k+1)/2 are the vertices of the upper edge of the front face (see Figs 4–9). Next we
show how to set the BB-coefficients ci jk�, i + j + k + � = 3, of s f |T for that particular tetrahedron T .
We consider four different layers

Li = {ξ ∈ T : ξ = ξi jk�, j + k + � = 3 − i}, i = 0, . . . , 3,

of domain points in T . The formulae for the BB-coefficients of s f associated with domain points in
the remaining tetrahedra in Q (and, therefore, for all tetrahedra in �) then immediately follow from
symmetry.

Before providing explicit formulae, we exemplary describe the setting of two coefficients in simple
terms for better geometric visualization of the masks and justification of our specific notation for data
values. For instance, to obtain the BB-coefficient associated with the domain point located at the corner
of a box, we simply average the data at the centres of eight boxes sharing this corner (cf. the first two
formulae in (3.3), below). To obtain the BB-coefficient associated with the domain point located at the
centre of the box Qi jk , we take the following average: the datum at this point with weight 36, the data
at the centres of the six boxes sharing faces with Qi jk with weight 8 each and the data at the centres of
the 12 remaining boxes sharing edges with Qi jk (cf. formula (3.9), below).

FIG. 4. Location of the domain points ξ0030, ξ0003, ξ0021, ξ0012 in layer L0.
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FIG. 5. Location of the domain points ξ0120, ξ0102, ξ0111 in layer L0.

FIG. 6. Location of the domain points ξ0210, ξ0201, ξ0300 in layer L0.

FIG. 7. Location of the domain points ξ1020, ξ1002, ξ1011 in layer L1.

FIG. 8. Location of the domain points ξ1110, ξ1101, ξ1200 in layer L1.

FIG. 9. Location of the domain points ξ2010, ξ2001, ξ2100 in layer L2.
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Now we proceed with the explicit description of our quasi-interpolation scheme. For the BB-
coefficients of s f |T associated with points in L0 (see Figs 4–6), we set

c0030 := 1

8
(I + F + L + T + LT + FL + FT + FLT),

c0003 := 1

8
(I + F + R + T + RT + FR + FT + FRT),

c0021 := 5

24
(I + F + T + FT) + 1

24
(L + FL + LT + FLT),

c0012 := 5

24
(I + F + T + FT) + 1

24
(R + FR + RT + FRT),

(3.3)

c0120 := 5

24
(I + F) + 1

8
(L + T + FL + FT) + 1

24
(LT + FLT),

c0102 := 5

24
(I + F) + 1

8
(R + T + FR + FT) + 1

24
(RT + FRT),

c0111 := 13

48
(I + F) + 7

48
(T + FT) + 1

32
(L + R + FL + FR)

+ 1

96
(LT + RT + FLT + FRT),

(3.4)

c0210 := 13

48
(I + F) + 17

192
(L + T + FL + FT)

+ 1

96
(LT + FLT) + 1

64
(R + D + FR + FD)

+ 1

192
(RT + LD + FRT + FLD),

c0201 := 13

48
(I + F) + 17

192
(R + T + FR + FT)

+ 1

96
(RT + FRT) + 1

64
(L + D + FL + FD)

1

192
(RD + LT + FLT + FRD),

c0300 := 13

48
(I + F) + 5

96
(L + R + T + D + FL + FR + FT + FD)

+ 1

192
(RT + RD + LT + LD + FRT + FRD + FLT + FLD).

(3.5)
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For the BB-coefficients of s f |T associated with points in L1 (see Figs 7 and 8), we set

c1020 := 1

4
I + 1

6
(F + L + T ) + 1

12
(LT + FL + FT),

c1002 := 1

4
I + 1

6
(F + R + T ) + 1

12
(RT + FR + FT),

c1011 := 1

3
I + 5

24
(F + T ) + 1

12
FT + 1

24
(L + R)

+ 1

48
(LT + RT + FL + FR),

(3.6)

c1110 := 1

3
I + 5

24
F + 1

8
(L + T ) + 5

96
(FL + FT)

+ 1

48
(D + R + LT) + 1

96
(FD + LD + RT + FR),

c1101 := 1

3
I + 5

24
F + 1

8
(R + T ) + 5

96
(FR + FT)

+ 1

48
(D + L + RT) + 1

96
(FD + LT + RD + FL),

c1200 := 1

3
I + 5

24
F + 7

96
(L + R + T + D)

+ 1

32
(FL + FR + FT + FD) + 1

96
(RT + RD + LT + LD).

(3.7)

For the BB-coefficients of s f |T associated with points in L2 (see Fig. 9), we set

c2010 := 3

8
I + 7

48
(F + T + L) + 1

48
(R + D + B + LT + FL + FT)

+ 1

96
(RT + BT + FR + FD + LD + BL),

c2001 := 3

8
I + 7

48
(F + T + R) + 1

48
(L + D + B + RT + FR + FT)

+ 1

96
(LT + BT + FL + FD + RD + BR), (3.8)

c2100 := 3

8
I + 1

12
(T + R + L + D) + 1

64
(FT + FR + FL + FD)

+ 7

48
F + 1

48
B + 1

96
(RT + LD + LT + RD)

+ 1

192
(BT + BR + BL + BD).
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Finally, for the BB-coefficient of s f |T associated with the point ξ3000 in L3, we set

c3000 := 3

8
I + 1

12
(T + F + L + R + D + B)

+ 1

96
(LT + FL + FT + RT + BT + FR + FD + LD + BD + BR + RD + BL). (3.9)

Note that in (3.3)–(3.9), the BB-coefficients are set locally. More precisely, for any tetrahedron T in
�, we only use data values at the centres of ΩT , which is the union of the boxes intersecting the box
QT containing T . In the following sections, we show that the above setting of the BB-coefficients is
done very carefully, so that the spline s f resulting from (3.3)–(3.9) is globally C1 smooth, and satisfies
certain natural approximation properties.

4. Smoothness properties of the quasi-interpolation operator

In this section, we analyse smoothness properties satisfied by the cubic spline s f resulting from the
method described in Section 3.

First, we note that it can be easily checked that for each pair of tetrahedra in � sharing a common
triangular face, each BB-coefficient of s f associated with a domain point located in that face is uniquely
determined: the symmetry of the formulae in (3.3) makes the value of the BB-coefficient independent
of the choice of the adjacent tetrahedra. Hence, the spline s f is a continuous function on Ω , and thus
s f ∈ S0. On the other hand, it is non-trivial to see that we set the BB-coefficients of s f so that the spline
s f is a C1 function on Ω . The next theorem shows that this is indeed the case.

THEOREM 4.1 The cubic quasi-interpolating spline s f is in C1(Ω), or, equivalently, the quasi-
interpolation operator Q: C(Ω) → S0 defined by

Q( f ) := s f , for each f ∈ C(Ω), (4.1)

is a linear operator mapping into the spline space S defined in (2.1).

Proof. We have to check that the C1 smoothness conditions across all the faces of each tetrahedron
T in � are satisfied. Without loss of generality, let T = 〈v0, v1, v2, v3〉 be the same tetrahedron as
in Section 3, with the vertices v0 = vi jk , v1 = (vi jk + vi−1 jk)/2, v2 = (vi jk + vi−1 j−1k+1)/2 and
v3 = (vi jk + vi−1 j+1k+1)/2. We have to show that all C1smoothness conditions in (2.8)–(2.9) are sim-
ultaneously satisfied. Since verifying those conditions involves nothing but elementary computations,
we only give here a verification for some of them.

We consider the smoothness across F = 〈v0, v1, v2〉. Let T̃ := 〈v0, v1, v2, ṽ3〉 be the tetrahedron
sharing F with T , i.e. ṽ3 = (vi jk +vi−1 j−1k−1)/2. Applying the symmetric version of the third equation
in (3.3) to set the BB-coefficient c̃0021 of s f , we obtain

c̃0021 = 5

24
(I + F + L + FL) + 1

24
(T + FT + LT + FLT).

Hence, we get from (3.3)

c0021 + c̃0021 = 5

24
(I + F + T + FT) + 1

24
(L + FL + LT + FLT)

+ 5

24
(I + F + L + FL) + 1

24
(T + FT + LT + FLT)
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= 5

12
(I + F) + 1

4
(T + FT + L + FL) + 1

12
(LT + FLT)

= 2c0120,

where in the last equality, we use the value of c0120 from (3.4). This shows that the first smoothness
condition in (2.6) is satisfied. All the remaining conditions in (2.6), and the conditions in (2.7), (2.9) can
be checked similarly.

Next we consider the smoothness across the face F = 〈v0, v2, v3〉. Let T̃ := 〈v0, ṽ1, v2, v3〉 be the
tetrahedron sharing F with T , i.e. ṽ1 = (vi jk + vi jk+1)/2. Applying the symmetric version of the third
equation in (3.8) to set the BB-coefficient c̃2100 of s f , we obtain

c̃2100 = 3

8
I + 1

12
(F + R + L + B) + 1

64
(FT + RT + LT + BT)

+ 7

48
T + 1

48
D + 1

96
(FR + FL + BR + BL)

+ 1

192
(FD + RD + LD + BD).

Now it follows from the formulae for the BB-coefficients c2100, c2010 and c2001 in (3.8) that

c2100 + c̃2100 − (c2010 + c2001)/2

=
(

3

8
I + 1

12
(T + R + L + D) + 1

64
(FT + FR + FL + FD) + 7

48
F

+ 1

48
B + 1

96
(RT + LD + LT + RD) + 1

192
(BT + BR + BL + BD)

)

+
(

3

8
I + 1

12
(F + R + L + B) + 1

64
(FT + RT + LT + BT) + 7

48
T

+ 1

48
D + 1

96
(FR + FL + BR + BL) + 1

192
(FD + RD + LD + BD)

)

−
[(

3

8
I + 7

48
(F + T + L) + 1

48
(R + D + B + LT + FL + FT)

+ 1

96
(RT + BT + FR + FD + LD + BL)

)

+
(

3

8
I + 7

48
(F + T + R) + 1

48
(L + D + B + RT + FR + FT)

+ 1

96
(LT + BT + FL + FD + RD + BR)

)]/
2.
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Some elementary computations show that

c2100 + c̃2100 − (c2010 + c2001)/2

= 3

8
I + 1

12
(T + R + L + D + F + B) + 1

96
(FT + FR + FL

+ FD + RT + LD + LT + RD + BT + BR + BL + BD).

Comparing this result with the formula for the BB-coefficient c3000 in (3.9), we see that the first smooth-
ness condition in (2.8) is satisfied. All the remaining smoothness conditions in (2.8) can be verified
similarly. The proof of the theorem is complete. �

5. Properties of the quasi-interpolation operator

In this section, we summarize some important properties of the quasi-interpolation operator Q defined
in (4.1). These results are used for deriving the error bounds in Section 6.

We begin with certain reproduction properties of the quasi-interpolation operator. The next lemma
shows that Q reproduces trilinear polynomials.

LEMMA 5.1 For any p in T3 := span{1, x, y, z, xy, xz, yz, xyz} ⊆ P3, we have Q(p) = p.

Proof. Due to the symmetry of our scheme in Section 3, it suffices to show that the monomials from
{1, x, xy, xyz} are reproduced by Q. This is clear for the first monomial in this set, because our choice
(as in (3.3)–(3.9)) of the weights ωi0 j0k0 in (3.2) yields∑

i0, j0,k0∈{−1,0,1}
ωi0 j0k0 = 1,

and, therefore, each BB-coefficient of the spline Q(1) has the value 1, assuring that Q(1) = 1. The
reproduction of any other monomial q can be checked directly by comparing the BB-coefficients of
the spline Q(q) on an arbitrary tetrahedron in � with the values of the BB-coefficients of q on this
tetrahedron. It suffices to consider the same tetrahedron T = 〈v0, v1, v2, v3〉 as in Section 3 with the
vertices v0 = vi jk , v1 = (vi jk +vi−1 jk)/2, v2 = (vi jk +vi−1 j−1k+1)/2 and v3 = (vi jk +vi−1 j+1k+1)/2.

Let q(x, y) = x . Its BB-coefficients ci jk� with respect to T are

c0030 = c0003 = c0021 = c0012 = c0120 = c0102

= c0111 = c0201 = c0300 =
(

i − 1

2

)
h,

c1020 = c1002 = c1011 = c1110 = c1101 = c1200 =
(

i − 1

3

)
h,

c2010 = c2001 = c2100 =
(

i − 1

6

)
h, c3000 = ih.

(5.1)

On the other hand, for the monomial q(x, y) = x , we have

F = FL = FR = FD = FT = FLD = FRD = FLT = FRT = (i − 1)h,

I = L = R = T = D = LD = RD = LT = RT = ih,

B = BL = BR = BD = BT = BLD = BRD = BLT = BRT = (i + 1)h,
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and from our scheme in (3.3)–(3.9) it follows that

c0030 = 1

8
(4i + 4(i − 1))h = c0003,

c0021 =
(

5

24
+ 1

24

)
(2i + 2(i − 1))h = c0012,

c0120 =
((

5

24
+ 1

24

)
(2i − 1) + 1

8
(2i + 2(i − 1))

)
h = c0102,

c0111 =
((

13

48
+ 7

48

)
(2i − 1) +

(
1

32
+ 1

96

)
(2i + 2(i − 1))

)
h,

c0210 =
((

13

48
+ 1

96

)
(2i − 1) +

(
17

192
+ 1

64
+ 1

192

)
(2i + 2(i − 1))

)
h = c0201,

c0300 =
(

13

48
(2i − 1) +

(
5

96
+ 1

192

)
(4i + 4(i − 1))

)
h,

c1020 =
(

1

4
i + 1

6
((i − 1) + 2i) + 1

12
(i + 2(i − 1))

)
h = c1002,

c1011 =
(

1

3
i + 5

24
((i − 1) + i) + 1

12
(i − 1) + 1

24
(2i) + 1

48
(2i + 2(i − 1))

)
h,

c1110 =
(

1

3
i + 5

24
(i − 1) + 1

8
(2i) + 5

96
(2(i − 1)) + 1

48
(3i)

+ 1

96
(2i + 2(i − 1))

)
h = c1101,

c1200 =
(

1

3
i + 5

24
(i − 1) +

(
7

96
+ 1

96

)
(4i) + 1

32
(4(i − 1))

)
h,

c2010 =
(

3

8
i + 7

48
(2i + (i − 1)) + 1

48
((i + 1) + 3i + 2(i − 1))

+ 1

96
(2(i + 1) + 2i + 2(i − 1))

)
h = c2001,

c2100 =
(

3

8
i +

(
1

12
+ 1

96

)
(4i) + 1

64
(4(i − 1)) + 7

48
(i − 1)

+ 1

48
(i + 1) + 1

192
(4(i + 1))

)
h,

c3000 =
(

3

8
i + 1

12
((i + 1) + 4i + (i − 1)

)
+ 1

96
(4(i + 1) + 4i + 4(i − 1)))h.
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Some elementary calculations now show that these are in fact the BB-coefficients of q with respect to
T , as in (5.1). This completes the proof that Q(q) = q. The reproduction of the remaining monomials
xy and xyz can be shown similarly, and hence the proof is complete. �

The next lemma shows that certain cubic polynomials are nearly reproduced by our quasi-
interpolation operator Q.

LEMMA 5.2 For the cubic polynomials p ∈ P3 of the form

p(x, y) = p̃(x, y) + ax2 + by2 + cz2, (x, y) ∈ Ω, (5.2)

where p̃ ∈ T3, we have Q(p) = p + 1
4 (a + b + c)h2.

Proof. Lemma 5.1, the linearity of Q and the symmetry of our quasi-interpolation scheme imply that it
suffices to show that

Q(p) = p + 1

4
h2, where p(x, y) = x2.

To this end, we basically use the same method as in the proof of Lemma 5.1, namely, we compare the
BB-coefficients of the splineQ(p) on the same tetrahedron T := 〈v0, v,v2, v3〉 in Qi jk as in Lemma 5.1
with the values of the BB-coefficients of p on this tetrahedron. We begin by computing the values
pi jk� := p(ξi jk�) in T :

p0 jk� =
(

i − 1

2

)2

h2, j + k + � = 3, p1 jk� =
(

i − 1

3

)2

h2, j + k + � = 2,

p2 jk� =
(

i − 1

6

)2

h2, j + k + � = 1, p3000 = i2h2.

(5.3)

Using these values of p and (2.4), we compute the BB-coefficients c̃i jk� of p on T :

c̃0 jk� =
(

i − 1

2

)2

h2, j + k + � = 3,

c̃1 jk� =
(

i2 − 2

3
i + 1

12

)
h2, j + k + � = 2,

c̃2 jk� =
(

i2 − 1

3
i

)
h2, j + k + � = 1, c̃3000 = i2h2.

(5.4)

On the other hand, for p(x, y) = x2, we have

F = FL = FR = FD = FT = FLD = FRD = FLT = FRT = (i − 1)2h2,

I = L = R = T = D = LD = RD = LT = RT = i2h2,

B = BL = BR = BD = BT = BLD = BRD = BLT = BRT = (i + 1)2h2,
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and our quasi-interpolation scheme implies that

c0030 = c0003 = 1

8
(4i2 + 4(i − 1)2)h2 =

((
i − 1

2

)2

+ 1

4

)
h2,

c0021 = c0012 =
(

5

24
+ 1

24

)
(2i2 + 2(i − 1)2)h2 =

((
i − 1

2

)2

+ 1

4

)
h2,

c0012 = c0120 =
((

5

24
+ 1

24

)
(i2 + (i − 1)2) + 1

8
(2i2 + 2(i − 1)2)

)
h2

=
((

i − 1

2

)2

+ 1

4

)
h2,

c0111 =
((

13

48
+ 7

48

)
(i2 + (i − 1)2) +

(
1

32
+ 1

96

)
(2i2 + 2(i − 1)2)

)
h2

=
((

i − 1

2

)2

+ 1

4

)
h2,

c0210 = c0201 =
((

13

48
+ 1

96

)
(i2 + (i − 1)2

)

+
(

17

192
+ 1

64
+ 1

192

)
(2i2 + 2(i − 1)2))h2

=
((

i − 1

2

)2

+ 1

4

)
h2,

c0300 =
(

13

48

(
i2 + (i − 1)2

)
+

(
5

96
+ 1

192

)
(4i2 + 4(i − 1)2)

)
h2

=
((

i − 1

2

)2

+ 1

4

)
h2,

c1020 = c1002 =
(

1

4
i2 + 1

6
((i − 1)2 + 2i2) + 1

12
(i2 + 2(i − 1)2)

)
h2

=
((

i2 − 2

3
i + 1

12

)
+ 1

4

)
h2,

c1011 =
(

1

3
i2 + 5

24
((i − 1)2 + i2) + 1

12
(i − 1)2 + 1

24
(2i2) + 1

48
(2i2 + 2(i − 1)2)

)
h2

=
((

i2 − 2

3
i + 1

12

)
+ 1

4

)
h2,
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c1110 = c1101 =
((

1

3
+ 2

8
+ 3

48

)
i2 +

(
5

24
+ 10

96

)
(i − 1)2 + 2

96
(i2 + (i − 1)2)

)
h2

=
((

i2 − 2

3
i + 1

12

)
+ 1

4

)
h2,

c1200 =
((

1

3
+ 28

96
+ 4

96

)
i2 +

(
5

24
+ 4

32

)
(i − 1)2

)
h2

=
((

i2 − 2

3
i + 1

12

)
+ 1

4

)
h2,

c2010 = c2001 =
(

3

8
i2 + 7

48
(2i2 + (i − 1)2) + 1

48
((i + 1)2 + 3i2

+ 2(i − 1)2) + 1

96
(2(i + 1)2 + 2i2 + 2(i − 1)2)

)
h2

=
((

i2 − 1

3
i

)
+ 1

4

)
h2,

c2100 =
((

3

8
+ 4

12
+ 4

96

)
i2 +

(
4

64
+ 7

48

)
(i − 1)2 +

(
1

48
+ 4

192

)
(i + 1)2

)
h2

=
((

i2 − 1

3
i

)
+ 1

4

)
h2,

c3000 =
(

3

8
i2 + 1

12
((i + 1)2 + 4i2 + (i − 1)2) + 1

96
(4(i + 1)2 + 4i2 + 4(i − 1)2)

)
h2

=
(

i2 + 1

4

)
h2.

It is now clear that c̃i jk� + 1
4 h2 = ci jk�, for all i + j + k + � = 3, and hence, the proof of the lemma is

complete. �
The next corollary is a direct consequence of the previous lemma. From here on, we denote by

Dα
x Dβ

y Dγ
z higher-order partial derivatives.

COROLLARY 5.3 For the cubic polynomials p ∈ P3 of the form

p(x, y) = p̃(x, y) + ax2 + by2 + cz2, (x, y) ∈ Ω,

where p̃ ∈ T3, we have for all α + β + γ ∈ {1, 2, 3}
Dα

x Dβ
y Dγ

z Q(p) = Q(Dα
x Dβ

y Dγ
z p).

Proof. From Lemma 5.2, it follows that Q(p) = p + κ , where κ is a constant. This implies that for
α + β + γ ∈ {1, 2, 3},

Dα
x Dβ

y Dγ
z Q(p) = Dα

x Dβ
y Dγ

z (p + κ) = Dα
x Dβ

y Dγ
z p.
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Moreover, for α + β + γ ∈ {1, 2, 3}, we have Dα
x Dβ

y Dγ
z p ∈ T3, and, therefore, Lemma 5.1 implies that

Dα
x Dβ

y Dγ
z p = Q(Dα

x Dβ
y Dγ

z p).

The proof is complete. �
Given a compact set B ⊆ Ω̃ =: [0, (n + 1)h] × [0, (m + 1)h] × [(r + 1)h], for any f ∈ C(Ω̃), we

denote by

‖ f ‖B := sup{| f (x, y)|: (x, y) ∈ B}, (5.5)

the uniform norm of f . The next theorem shows that the operatorQ is uniformly bounded. In particular,
the result implies that the computation of the splines can be done in a very stable way, because the
associated (global) operator norm ‖Q‖ of Q satisfies

‖Q‖ := sup{‖Q( f )‖Ω : ‖ f ‖Ω̃ = 1} = 1.

THEOREM 5.4 For any tetrahedron T in � contained in the box QT in ♦,

‖Q( f )‖T � ‖ f ‖ΩT ,

where ΩT is the union of the boxes intersecting QT .

Proof. According to our method, all the BB-coefficients ci jk� of the polynomial piece p = s f |T =
Q( f )|T on T in its BB-form (2.2) are determined by using the values of f at the points from the
boxes intersecting QT . Since the weights ωi0 j0k0 in (3.2) are non-negative and sum up to 1, it follows
from (3.3)–(3.9) that

|ci jk�| � ‖ f ‖ΩT , i + j + k + � = 3.

The assertion now follows, since from (2.3) we obtain

‖p‖T � max{|ci jk�|: i + j + k + � = 3} � ‖ f ‖ΩT .

The proof of the theorem is complete. �

6. Approximation properties of the quasi-interpolating spline

In this section, we give error bounds for the quasi-interpolating spline as well as for its derivatives. We
first prove that—as in the case of the trilinear model mentioned in Section 1—the quasi-interpolating
spline s f := Q( f ) approximates twice differentiable functions with order two, while their first deriva-
tives are simultaneously approximated with order one. In addition, we show that, if the data come
from a three times differentiable function, then the derivatives of s f have an advantageous behaviour,

namely, they approximate the derivatives Dα
x Dβ

y Dγ
z f , α + β + γ = 1, 2, 3, with nearly optimal ap-

proximation order. This is a non-standard phenomenon because it means that for this function class, the
quasi-interpolating spline and its first derivatives yield the same approximation order.

We begin by giving a (local) error bound for f −Q( f ) and its first derivatives in the uniform norm
for the case when f is two times continuously differentiable. Here and in the following, we let

‖Dr f ‖B := max{‖Dα
x Dβ

y f Dγ
z f ‖B : α + β + γ = r}

for any (piecewise) r -times differentiable function f , and B as in (5.5).
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THEOREM 6.1 Let T , QT , ΩT be as in Theorem 5.4, and f ∈ C2(ΩT ). Then,

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖T � K0‖D2 f ‖ΩT h2−α−β−γ , α + β + γ = 0, 1, 2, (6.1)

where K0 > 0 is an absolute constant independent of f and h.

Proof. We consider the Lagrange form of the remainder term in the Taylor expansion of f at the centre
of ΩT and obtain p f ∈ P1 := span{1, x, y, z} with the property

‖Dα
x Dβ

y Dγ
z ( f − p f )‖ΩT � C0‖D2 f ‖ΩT h2−α−β−γ , α + β + γ = 0, 1, 2, (6.2)

where C0 is an absolute constant independent of f and h. Since Dα
x Dβ

y Dγ
z p f ∈ T3, Lemma 5.1 implies

that

Q(Dα
x Dβ

y Dγ
z p f ) = Dα

x Dβ
y Dγ

z p f , α + β + γ = 0, 1, 2.

Therefore,

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖T � ‖Dα

x Dβ
y Dγ

z ( f − p f )‖ΩT + ‖Dα
x Dβ

y Dγ
z Q( f − p f )‖T ,

for all α + β + γ = 0, 1, 2. In view of (6.2), it now suffices to estimate the second term of these
inequalities. For α + β + γ = 0, we use Theorem 5.4 and the error bound (6.2) to obtain

‖Q( f − p f )‖T � ‖ f − p f ‖ΩT � C0‖D2 f ‖ΩT h2.

For α + β + γ = 1, 2, we first use a Markov type inequality as in Nürnberger et al. (2005a) with a
constant M0 � 1, and then we use Theorem 5.4 to obtain

‖Dα
x Dβ

y Dγ
z Q( f − p f )‖T � M0h−α−β−γ ‖Q( f − p f )‖T � M0C0‖D2 f ‖ΩT h2−α−β−γ .

Combining these inequalities leads to (6.1) with the constant K0 = (1 + M0)C0 independent of f and
h. The proof is complete. �

Next we provide a (local) error bound for f −Q( f ) and its derivatives in the uniform norm for the
case when f is three times continuously differentiable.

THEOREM 6.2 Let T , QT , ΩT be as in Theorem 5.4, and f ∈ C3(ΩT ). Then,

‖ f −Q( f )‖T � K1‖D2 f ‖ΩT h2 + K2‖D3 f ‖ΩT h3, (6.3)

and for all α + β + γ = 1, 2, 3,

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖T � K3‖D3 f ‖ΩT h3−α−β−γ ,

where K1, K2, K3 > 0 are absolute constants independent of f and h.

Proof. First, the Taylor expansion of f at the centre of ΩT with the Lagrange form of the remainder
term shows the existence of p f ∈ P2 with

‖Dα
x Dβ

y Dγ
z ( f − p f )‖ΩT � C1‖D3 f ‖ΩT h3−α−β−γ , α + β + γ = 0, . . . , 3, (6.4)

where C1 is an absolute constant independent of f and h. The triangle inequality and (6.4) yield

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖T � C1‖D3 f ‖ΩT h3−α−β−γ + ‖Dα

x Dβ
y Dγ

z (Q( f ) − p f )‖T ,
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for all α+β+γ = 0, . . . , 3. Hence, we have to estimate the second term. We first consider α+β+γ = 0.
Obviously, p f ∈ P2 can be written in the form (5.2), and hence it follows from Lemma 5.2 that

‖Q( f ) − p f ‖T � ‖Q( f − p f )‖T + 1

8
max{‖D2

x f ‖T , ‖D2
y f ‖T , ‖D2

z f ‖T }h2.

Theorem 5.4 and the error bound (6.4) imply that

‖Q( f − p f )‖T � ‖ f − p f ‖ΩT � C1‖D3 f ‖ΩT h3,

and we obtain the first estimate in (6.3) with constants K2 = 2C1 and K1 = 1
8 , respectively. Next we

consider α+β+γ = 1, 2, 3. Since the derivatives of p f are contained in T3, we obtain from Lemma 5.1

Dα
x Dβ

y Dγ
z (Q( f ) − p f ) = Dα

x Dβ
y Dγ

z Q( f ) −Q(Dα
x Dβ

y Dγ
z p f ).

Corollary 5.3 now implies that

Dα
x Dβ

y Dγ
z (Q( f ) − p f ) = Dα

x Dβ
y Dγ

z (Q( f ) −Q(p f )) = Dα
x Dβ

y Dγ
z Q( f − p f ),

for all α + β + γ = 1, 2, 3. Applying a Markov type inequality as in Nürnberger et al. (2005a) with a
constant M1 � 1, and Theorem 5.4, we obtain

‖Dα
x Dβ

y Dγ
z Q( f − p f )‖T � M1h−α−β−γ ‖Q( f − p f )‖T

� M1h−α−β−γ ‖ f − p f ‖ΩT

� M1C1‖D3 f ‖ΩT h3−α−β−γ

for all α + β + γ = 1, 2, 3. Combining these inequalities leads to the second inequality in (6.3) with
constant K3 = (1 + M1)C1 independent of f and h. The proof is complete. �

We conclude this section with a summary of global error bounds. The results follow from The-
orems 6.1 and 6.2, respectively.

THEOREM 6.3

(i) If f ∈ C2(Ω̃), then

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖Ω � K0‖D2 f ‖Ω̃h2−α−β−γ , α + β + γ = 0, 1, 2, (6.5)

where K0 > 0 is the constant from Theorem 6.1.

(ii) If f ∈ C3(Ω̃), then

‖ f −Q( f )‖Ω � K1‖D2 f ‖Ω̃h2 + K2‖D3 f ‖Ω̃h3, (6.6)

and for all α + β + γ = 1, . . . , 3,

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖Ω � K3‖D3 f ‖Ω̃h3−α−β−γ ,

where K1, K2, K3 > 0 are the constants from Theorem 6.2.
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7. Numerical tests and remarks

In order to illustrate the approximation properties of the quasi-interpolating splines, we provide two
numerical examples based on synthetic data sampled from smooth test functions. Thus, in the tests
presented here, we ignore the round off effects, use double-precision computations and assume that all
the data values are exact.

We first consider the Marschner–Lobb test function (Marschner & Lobb, 1994) defined as

ml(v) = 2

5

(
1 − sin(π z/2) + 1

4

(
1 + cos

(
12π cos

(
π

√
x2 + y2/2

))))
,

for all v = (x, y, z) ∈ [−1, 1] × [−1, 1] × [−1, 1], so that ml(v) ∈ [0, 1]. This function of extreme
oscillation is used frequently in the area of volume visualization because it provides a difficult test for
any efficient 3D reconstruction method, in particular, in the cases when only very few data samples are
taken and simultaneous approximation of derivatives plays an important role.

We compute the cubic quasi-interpolating C1 splines sml according to our approach (for n = m = r ),
where we choose decreasing h and consider different kinds of errors. The numerical results are given
in Table 1. The first column contains values of h = 1/n. The total number N of data points is huge,
namely, N = (n+2)3. Thus, the biggest number of data sites we have is about 17×106. The computation
time for the largest test on a standard machine does not exceed a few seconds. The remaining columns
contain different types of errors. We denote by errml

data the maximal error of the function values at the
grid points, and errml

max is the maximal error of the spline in the uniform norm on Ω . The latter error is
computed approximately on a fine discretization T of the domain by choosing a fixed (high) number of
uniformly distributed points in each tetrahedron of �. We compute the values of the test function and
its approximating spline within machine precision, and calculate the maximal error on T . For the sake
of completeness, we also give the (approximate) average error errml

mean, and the (approximate) root mean
square error errml

rms, where the computations are based on the same sets T .
The results in Table 1 confirm that the quasi-interpolating splines yield approximation order two,

since in each row the error decreases by about the factor of four while h goes down to h/2. Moreover,
we computed the analogous errors for the first derivative Dx (ml) of ml. All the computations were done
in the same manner as for the values. As it is well-known in general spline theory, spline operators
possess the advantageous property to simultaneously approximate derivatives of a smooth function,
even in the case when only the values of this function are used. The results in Table 2 indicate that the
corresponding errors behave in the same way as the errors of the values. Therefore, the error of the
first derivative Dx is nearly optimal as we proved in Theorem 6.3. Considering general theory, this is a
non-standard phenomenon: for a smooth function, the first derivatives of the quasi-interpolating spline
provide the same order of accuracy as the spline itself.

TABLE 1 Approximation of ml by sml

1/h errml
mean errml

rms errml
max errml

data

16 0.065039 0.078119 0.184461 0.075148
32 0.047294 0.055252 0.122054 0.078329
64 0.017678 0.020732 0.039583 0.034708

128 0.004956 0.005843 0.010533 0.010167
256 0.001276 0.001506 0.002671 0.002648
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TABLE 2 Approximation of Dx (ml) by Dx (sml)

1/h errDx (ml)
mean errDx (ml)

rms errDx (ml)
max errDx (ml)

data

16 4.1498 5.2147 12.7069 10.1055
32 3.1971 4.1962 12.8251 12.5353
64 1.2138 1.6369 5.6238 5.6195

128 0.3367 0.4578 1.6029 1.5988
256 0.0866 0.1180 0.4141 0.4128

TABLE 3 Approximation of f by s f

1/h err f
mean err f

rms err f
max err f

data

16 0.0035295 0.0061525 0.0426452 0.0426404
32 0.0008831 0.0015573 0.0109651 0.0109638
64 0.0002203 0.0003903 0.0027608 0.0027605

128 0.0000550 0.0000976 0.0006914 0.0006913
256 0.0000137 0.0000244 0.0001729 0.0001729

In the second test, we use the smooth trivariate test function of Franke type

f (v) = 1

2
e−10((x− 1

4 )2+(y− 1
4 )2) + 3

4
e−16((x− 1

4 )2+(y− 1
4 )2+(z− 1

4 )2)

+ 1

2
e−10((x− 3

4 )2+(y− 1
8 )2+(z− 1

2 )2) − 1

4
e−20((x− 3

4 )2+(y− 3
4 )2),

for all v = (x, y, z) ∈ [−1/2, 1/2] × [−1/2, 1/2] × [−1/2, 1/2], so that f (v) ∈ [0, 1.3]. This function
is less oscillatory than the Marschner–Lobb function. In Tables 3 and 4, we summarize the results of our
computations for this test function, where we use the same notations for different errors as in Table 1.
Again, this confirms the results of Theorem 6.3—in particular, that the derivatives of the approximating
spline s f converge to the derivatives of f with the nearly optimal order.

We conclude the paper with some remarks.

REMARK 7.1 With the notation from Section 3, it is straightforward to evaluate the partial derivatives
of s f in x, y and z directions at the corners of the boxes in ♦ and at the points in V :

(i) For each vertex w of ♦, we have

Dxs f (w) = 1

(4h)
((I − F) + (L − FL) + (T − FT) + (LT − FLT)),

Dys f (w) = 1

(4h)
((I − L) + (F − FL) + (T − LT) + (FT − FLT)),

Dzs f (w) = 1

(4h)
((I − T ) + (F − FT) + (L − LT) + (FL − FLT)).

(7.1)
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TABLE 4 Approximation of Dx ( f ) by Dx (s f )

1/h errDx ( f )
mean errDx ( f )

rms errDx ( f )
max errDx ( f )

data

16 0.0217446 0.0357819 0.2247530 0.1916200
32 0.0054486 0.0090164 0.0603435 0.0496082
64 0.0013590 0.0022565 0.0152764 0.0125555

128 0.0003350 0.0005582 0.0038339 0.0031441
256 0.0000836 0.0001394 0.0009591 0.0007870

(ii) For each vertex v of V , we have

Dxs f (v) = 1

(4h)

(
3

4
(B − F) + 1

16
((BL − FL)

+ (BR − FR) + (BT − FT) − (BD − FD))

)
,

Dys f (v) = 1

(4h)

(
3

4
(R − L) + 1

16
((FR − FL)

+ (BR − BL) + (RT − LT) − (RD − LD))

)
,

Dzs f (v) = 1

(4h)

(
3

4
(T − D) + 1

16
((FT − FD)

+ (BT − BD) + (RT − RD) + (LT − LD))

)
.

(7.2)

Note that (7.1) and (7.2) are approximate derivatives naturally obtained from the data. More pre-
cisely, we observe that these derivatives are automatically determined as averages of weighted differ-
ences of the local gridded data. Besides the fact that we can use the derivatives of s f directly, in contrast
to standard approaches (see Marschner & Lobb, 1994; Meissner et al., 2000; Parker et al., 1998) of
approximating derivatives (to set up the corresponding, independent trilinear models), no information
from certain intermediate samples remains unused in our scheme.

Additionally, formulae (7.1) and (7.2) show that at each vertex of ♦ and V , the spline s f satisfies
relations of Hermite interpolation type. More precisely, s f interpolates the approximative derivatives
obtained from the given data values. However, no operator involving Hermite interpolation in the clas-
sical sense (prescribing the value and the three partial derivatives, independently) at these points exists
because of some structural properties of S (see Hangelbroek et al., 2004; Schumaker & Sorokina, 2005).

REMARK 7.2 When compared with well-known univariate spline approximation methods (see de Boor &
Fix, 1973; Lyche & Schumaker, 1975; Marsden, 1970; Schoenberg, 1967, and references therein), our
approach is related to the idea behind Schoenberg’s operator (Schoenberg, 1967) and the more general
approaches in Lyche & Schumaker (1975) involving point evaluation functionals. The connection can
be seen easily when Schoenberg’s spline approximant based on the cubic C1 spline with double knots
is written in its piecewise BB-form. As for a bivariate analogue of our scheme, we refer the reader to
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Sorokina & Zeilfelder (2005). The advantage of these constructions is that they require no (approxi-
mate) derivatives at any point of the domain, which is also the case for our quasi-interpolation scheme.
However, our approach differs from the univariate spline methods since we do not use any basis of
the spline space and work with the polynomial pieces directly. The algorithm for developing the BB-
coefficients formulae (3.3)–(3.9) comes from repeatedly averaging the data so that the approximation
order is preserved. The averaging weights in (3.2) are obtained by satisfying the smoothness require-
ments in (2.6)–(2.9) simultaneously.

REMARK 7.3 If the data of f are given only at the points vi jk, i = 1, . . . , n, j = 1, . . . , m, k = 1,

. . . , r , then our scheme requires an extension of the data to the larger domain Ω̃ . This can be done in
several ways. A natural example preserving the polynomials in span{1, x, y, z, xy, xz, yz, xyz} is to
define the missing data successively as follows:

f0 jk := 2 f1 jk − f2 jk, j = 1, . . . , m, k = 1, . . . , r,

f00k := 2 f01k − f02k, f0m+1k := 2 f0mk − f0m−1k, k = 1, . . . , r,

f0 j0 := 2 f0 j1 − f0 j2, f0 jr+1 := 2 f0 jr − f0 jr−1, j = 0, . . . , m + 1,

(7.3)

with analogous settings for the remaining missing data values.

REMARK 7.4 Due to the uniform structure of the underlying tetrahedral partition and the symmetry
of our quasi-interpolation scheme, it is possible to compute constants in Theorems 6.1–6.3 explicitly.
This can be done with the help of a Markov type inequality with explicit constants. More precisely,
using (2.4) and the techniques of Farin (1986) to compute the derivatives of polynomials in its BB-form,
it can be shown that for any p ∈ P3 on T ∈ �

‖Dα
x Dα

y Dα
z p‖T � Mαβγ ‖p‖T , where Mαβγ =

{
94, if α + β + γ = 1,

1152, if α + β + γ = 2.

The arguments from the proofs of Theorems 6.1 and 6.2 show, for instance, that if f ∈ C2(Ω̃) then

‖ f −Q( f )‖Ω � 21‖D2 f ‖Ω̃h2,

and if f ∈ C3(Ω̃) then

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖Ω � 1.5 × 103‖D3 f ‖Ω̃h2, α + β + γ = 1,

‖Dα
x Dβ

y Dγ
z ( f −Q( f ))‖Ω � 17.5 × 103‖D3 f ‖Ω̃h, α + β + γ = 2.

Moreover, we note that the constants slightly increase if we use the data described in Remark 7.3.

REMARK 7.5 We have also applied our scheme to simple test functions

f1(x, y, z) = 1 + x + y + z + xy + xz + yz + xyz and f2(x, y, z) = x2,

and verified the results of Lemmas 5.1 and 5.2 numerically. More precisely, the numerical tests for these
functions show that the values of f1 − s f1 as well as the corresponding derivatives are numerical zeros,
while the error f2 − s f2 is at most h2/4, and the corresponding derivatives of this function are also
numerical zeros.
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REMARK 7.6 Our scheme can be extended to more general partitions, where the grid points are spaced
non-uniformly, i.e.

V := {vi jk = (ihi , jh j , khk), i = 0, . . . , n + 1, j = 0, . . . , m + 1, k = 0, . . . , r + 1}.

In this case, the weights ωi0 j0k0 in (3.2) have to be adjusted and the norm of the corresponding quasi-
interpolation operator changes.
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NÜRNBERGER, G., RÖSSL, C., SEIDEL, H.-P. & ZEILFELDER, F. (2005a) Quasi-interpolation by quadratic
piecewise polynomials in three variables. Comput. Aided Geom. Des., 22, 221–249.
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