From: Michael Orlitzky Date: Mon, 15 Nov 2021 18:53:29 +0000 (-0500) Subject: mjo/**/*.py: drop obsolete set_random_seed(). X-Git-Url: http://gitweb.michael.orlitzky.com/?p=sage.d.git;a=commitdiff_plain;h=928b7d49fda98ff105c92293b5797bb7a2b9873a mjo/**/*.py: drop obsolete set_random_seed(). We use a random random seed by default now finally. --- diff --git a/mjo/basis_repr.py b/mjo/basis_repr.py index 5c85998..9b9f15d 100644 --- a/mjo/basis_repr.py +++ b/mjo/basis_repr.py @@ -92,7 +92,6 @@ def basis_repr(M): The inverse is generally an inverse:: - sage: set_random_seed() sage: n = ZZ.random_element(10) sage: M = MatrixSpace(QQ,n) sage: X = M.random_element() diff --git a/mjo/cone/faces.py b/mjo/cone/faces.py index acd9802..6c5843e 100644 --- a/mjo/cone/faces.py +++ b/mjo/cone/faces.py @@ -51,7 +51,6 @@ def face_generated_by(K,S): The face generated by should be a face:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, max_rays=10) sage: S = ( K.random_element() for idx in range(5) ) sage: F = face_generated_by(K, S) @@ -60,7 +59,6 @@ def face_generated_by(K,S): The face generated by a set should always contain that set:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, max_rays=10) sage: S = ( K.random_element() for idx in range(5) ) sage: F = face_generated_by(K, S) @@ -70,7 +68,6 @@ def face_generated_by(K,S): The generators of a proper cone are all extreme vectors of the cone, and therefore generate their own faces:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: max_rays=10, ....: strictly_convex=True, @@ -82,7 +79,6 @@ def face_generated_by(K,S): that ``x`` is in the relative interior of ``F`` if and only if ``F`` is the face generated by ``x`` [Tam]_:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, max_rays=10) sage: x = K.random_element() sage: S = [x] @@ -96,7 +92,6 @@ def face_generated_by(K,S): and ``G`` in the face lattice is equal to the face generated by ``F + G`` (in the Minkowski sense) [Tam]_:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, max_rays=10) sage: L = K.face_lattice() sage: F = L.random_element() @@ -109,7 +104,6 @@ def face_generated_by(K,S): Combining Proposition 3.1 and Corollary 3.9 in [Tam]_ gives the following equality for any ``y`` in ``K``:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, max_rays=10) sage: y = K.random_element() sage: S = [y] @@ -172,7 +166,6 @@ def dual_face(K,F): The dual face of ``K`` with respect to itself should be the lineality space of its dual [Tam]_:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, max_rays=10) sage: K_dual = K.dual() sage: lKd_gens = ( dir*l for dir in [1,-1] for l in K_dual.lines() ) @@ -183,7 +176,6 @@ def dual_face(K,F): If ``K`` is proper, then the dual face of its trivial face is the dual of ``K`` [Tam]_:: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, ....: max_rays=10, ....: strictly_convex=True, @@ -196,7 +188,6 @@ def dual_face(K,F): The dual of the cone of ``K`` at ``y`` is the dual face of the face of ``K`` generated by ``y`` ([Tam]_ Corollary 3.2):: - sage: set_random_seed() sage: K = random_cone(max_ambient_dim=8, max_rays=10) sage: y = K.random_element() sage: S = [y] @@ -209,7 +200,6 @@ def dual_face(K,F): Since all faces of a polyhedral cone are exposed, the dual face of a dual face should be the original face [HilgertHofmannLawson]_:: - sage: set_random_seed() sage: def check_prop(K,F): ....: return dual_face(K.dual(), dual_face(K,F)).is_equivalent(F) sage: K = random_cone(max_ambient_dim=8, max_rays=10) diff --git a/mjo/cone/nonnegative_orthant.py b/mjo/cone/nonnegative_orthant.py index 8c6f5b5..2bd1b3c 100644 --- a/mjo/cone/nonnegative_orthant.py +++ b/mjo/cone/nonnegative_orthant.py @@ -48,7 +48,6 @@ def nonnegative_orthant(n, lattice=None): The nonnegative orthant is a proper cone:: - sage: set_random_seed() sage: n = ZZ.random_element(10) sage: K = nonnegative_orthant(n) sage: K.is_proper() diff --git a/mjo/cone/permutation_invariant.py b/mjo/cone/permutation_invariant.py index faa39f7..d071586 100644 --- a/mjo/cone/permutation_invariant.py +++ b/mjo/cone/permutation_invariant.py @@ -65,7 +65,6 @@ def is_permutation_invariant(K): As is the nonnegative orthant:: - sage: set_random_seed() sage: K = nonnegative_orthant(ZZ.random_element(5)) sage: is_permutation_invariant(K) True diff --git a/mjo/cone/rearrangement.py b/mjo/cone/rearrangement.py index c65316e..0bbf95b 100644 --- a/mjo/cone/rearrangement.py +++ b/mjo/cone/rearrangement.py @@ -116,7 +116,6 @@ def rearrangement_cone(p,n,lattice=None): cone should sum to a nonnegative number (this tests that the generators really are what we think they are):: - sage: set_random_seed() sage: def _has_rearrangement_property(v,p): ....: return sum( sorted(v)[0:p] ) >= 0 sage: all( _has_rearrangement_property( @@ -131,7 +130,6 @@ def rearrangement_cone(p,n,lattice=None): The rearrangenent cone of order ``p`` is contained in the rearrangement cone of order ``p + 1`` by [Jeong]_ Proposition 5.2.1:: - sage: set_random_seed() sage: n = ZZ.random_element(2,10) sage: p = ZZ.random_element(1,n) sage: K1 = rearrangement_cone(p,n) @@ -143,7 +141,6 @@ def rearrangement_cone(p,n,lattice=None): rearrangement cone of order ``n - p`` when ``p`` is less than ``n``, by [Jeong]_ Proposition 5.2.1:: - sage: set_random_seed() sage: n = ZZ.random_element(2,10) sage: p = ZZ.random_element(1,n) sage: K1 = rearrangement_cone(p,n) diff --git a/mjo/cone/schur.py b/mjo/cone/schur.py index edf282d..1fa1e52 100644 --- a/mjo/cone/schur.py +++ b/mjo/cone/schur.py @@ -65,7 +65,6 @@ def schur_cone(n, lattice=None): [GourionSeeger]_, whose elements' entries are in non-increasing order:: - sage: set_random_seed() sage: n = ZZ.random_element(10) sage: K = schur_cone(n).dual() sage: x = K.random_element() @@ -81,7 +80,6 @@ def schur_cone(n, lattice=None): The Schur cone induces the majorization ordering:: - sage: set_random_seed() sage: def majorized_by(x,y): ....: return (all(sum(x[0:i]) <= sum(y[0:i]) ....: for i in range(x.degree()-1)) diff --git a/mjo/cone/symmetric_pd.py b/mjo/cone/symmetric_pd.py index e396bbc..607df2a 100644 --- a/mjo/cone/symmetric_pd.py +++ b/mjo/cone/symmetric_pd.py @@ -38,7 +38,6 @@ def random_symmetric_pd(V): Well, it doesn't crash at least:: - sage: set_random_seed() sage: V = VectorSpace(QQ, 2) sage: A = random_symmetric_pd(V) sage: A.matrix_space() diff --git a/mjo/cone/symmetric_psd.py b/mjo/cone/symmetric_psd.py index 89eba53..d711773 100644 --- a/mjo/cone/symmetric_psd.py +++ b/mjo/cone/symmetric_psd.py @@ -191,7 +191,6 @@ def random_symmetric_psd(V, accept_zero=True, rank=None): Well, it doesn't crash at least:: - sage: set_random_seed() sage: V = VectorSpace(QQ, 2) sage: A = random_symmetric_psd(V) sage: A.matrix_space() @@ -201,7 +200,6 @@ def random_symmetric_psd(V, accept_zero=True, rank=None): A matrix with the desired rank is returned:: - sage: set_random_seed() sage: V = VectorSpace(QQ, 5) sage: A = random_symmetric_psd(V,False,1) sage: A.rank() @@ -221,7 +219,6 @@ def random_symmetric_psd(V, accept_zero=True, rank=None): If the user asks for a rank that's too high, we fail:: - sage: set_random_seed() sage: V = VectorSpace(QQ, 2) sage: A = random_symmetric_psd(V,False,3) Traceback (most recent call last): diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index dd1bcf2..1ccbf2e 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -230,7 +230,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): We should compute that an element subalgebra is associative even if we circumvent the element method:: - sage: set_random_seed() sage: J = random_eja(field=QQ,orthonormalize=False) sage: x = J.random_element() sage: A = x.subalgebra_generated_by(orthonormalize=False) @@ -432,7 +431,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): TESTS:: - sage: set_random_seed() sage: J = random_eja() sage: J(1) Traceback (most recent call last): @@ -457,7 +455,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): TESTS:: - sage: set_random_seed() sage: J = random_eja() sage: n = J.dimension() sage: bi = J.zero() @@ -499,7 +496,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Our inner product is "associative," which means the following for a symmetric bilinear form:: - sage: set_random_seed() sage: J = random_eja() sage: x,y,z = J.random_elements(3) sage: (x*y).inner_product(z) == y.inner_product(x*z) @@ -510,7 +506,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Ensure that this is the usual inner product for the algebras over `R^n`:: - sage: set_random_seed() sage: J = HadamardEJA.random_instance() sage: x,y = J.random_elements(2) sage: actual = x.inner_product(y) @@ -523,7 +518,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): one). This is in Faraut and Koranyi, and also my "On the symmetry..." paper:: - sage: set_random_seed() sage: J = BilinearFormEJA.random_instance() sage: n = J.dimension() sage: x = J.random_element() @@ -636,7 +630,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): The values we've presupplied to the constructors agree with the computation:: - sage: set_random_seed() sage: J = random_eja() sage: J.is_associative() == J._jordan_product_is_associative() True @@ -758,7 +751,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Ensure that we can convert any element back and forth faithfully between its matrix and algebra representations:: - sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() sage: J(x.to_matrix()) == x @@ -948,7 +940,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Our inner product is "associative," which means the following for a symmetric bilinear form:: - sage: set_random_seed() sage: J = random_eja() sage: x,y,z = J.random_elements(3) sage: (x*y).inner_product(z) == y.inner_product(x*z) @@ -959,7 +950,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Ensure that this is the usual inner product for the algebras over `R^n`:: - sage: set_random_seed() sage: J = HadamardEJA.random_instance() sage: x,y = J.random_elements(2) sage: actual = x.inner_product(y) @@ -972,7 +962,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): one). This is in Faraut and Koranyi, and also my "On the symmetry..." paper:: - sage: set_random_seed() sage: J = BilinearFormEJA.random_instance() sage: n = J.dimension() sage: x = J.random_element() @@ -1200,7 +1189,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): The identity element acts like the identity, regardless of whether or not we orthonormalize:: - sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() sage: J.one()*x == x and x*J.one() == x @@ -1212,7 +1200,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): :: - sage: set_random_seed() sage: J = random_eja(field=QQ, orthonormalize=False) sage: x = J.random_element() sage: J.one()*x == x and x*J.one() == x @@ -1226,7 +1213,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): regardless of the base field and whether or not we orthonormalize:: - sage: set_random_seed() sage: J = random_eja() sage: actual = J.one().operator().matrix() sage: expected = matrix.identity(J.base_ring(), J.dimension()) @@ -1241,7 +1227,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): :: - sage: set_random_seed() sage: J = random_eja(field=QQ, orthonormalize=False) sage: actual = J.one().operator().matrix() sage: expected = matrix.identity(J.base_ring(), J.dimension()) @@ -1257,7 +1242,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Ensure that the cached unit element (often precomputed by hand) agrees with the computed one:: - sage: set_random_seed() sage: J = random_eja() sage: cached = J.one() sage: J.one.clear_cache() @@ -1266,7 +1250,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): :: - sage: set_random_seed() sage: J = random_eja(field=QQ, orthonormalize=False) sage: cached = J.one() sage: J.one.clear_cache() @@ -1379,7 +1362,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Every algebra decomposes trivially with respect to its identity element:: - sage: set_random_seed() sage: J = random_eja() sage: J0,J5,J1 = J.peirce_decomposition(J.one()) sage: J0.dimension() == 0 and J5.dimension() == 0 @@ -1392,7 +1374,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): elements in the two subalgebras are the projections onto their respective subspaces of the superalgebra's identity element:: - sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() sage: if not J.is_trivial(): @@ -1591,7 +1572,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): The theory shows that these are all homogeneous polynomials of a known degree:: - sage: set_random_seed() sage: J = random_eja() sage: all(p.is_homogeneous() for p in J._charpoly_coefficients()) True @@ -1682,7 +1662,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): positive integer rank, unless the algebra is trivial in which case its rank will be zero:: - sage: set_random_seed() sage: J = random_eja() sage: r = J.rank() sage: r in ZZ @@ -1693,7 +1672,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule): Ensure that computing the rank actually works, since the ranks of all simple algebras are known and will be cached by default:: - sage: set_random_seed() # long time sage: J = random_eja() # long time sage: cached = J.rank() # long time sage: J.rank.clear_cache() # long time @@ -1868,7 +1846,6 @@ class ConcreteEJA(FiniteDimensionalEJA): Our basis is normalized with respect to the algebra's inner product, unless we specify otherwise:: - sage: set_random_seed() sage: J = ConcreteEJA.random_instance() sage: all( b.norm() == 1 for b in J.gens() ) True @@ -1879,7 +1856,6 @@ class ConcreteEJA(FiniteDimensionalEJA): natural->EJA basis representation is an isometry and within the EJA the operator is self-adjoint by the Jordan axiom:: - sage: set_random_seed() sage: J = ConcreteEJA.random_instance() sage: x = J.random_element() sage: x.operator().is_self_adjoint() @@ -1974,7 +1950,6 @@ class MatrixEJA(FiniteDimensionalEJA): TESTS:: - sage: set_random_seed() sage: n = ZZ.random_element(1,5) sage: A = MatrixSpace(QQ, n) sage: B = MatrixEJA._denormalized_basis(A) @@ -1983,7 +1958,6 @@ class MatrixEJA(FiniteDimensionalEJA): :: - sage: set_random_seed() sage: n = ZZ.random_element(1,5) sage: A = ComplexMatrixAlgebra(n, scalars=QQ) sage: B = MatrixEJA._denormalized_basis(A) @@ -1992,7 +1966,6 @@ class MatrixEJA(FiniteDimensionalEJA): :: - sage: set_random_seed() sage: n = ZZ.random_element(1,5) sage: A = QuaternionMatrixAlgebra(n, scalars=QQ) sage: B = MatrixEJA._denormalized_basis(A) @@ -2001,7 +1974,6 @@ class MatrixEJA(FiniteDimensionalEJA): :: - sage: set_random_seed() sage: n = ZZ.random_element(1,5) sage: A = OctonionMatrixAlgebra(n, scalars=QQ) sage: B = MatrixEJA._denormalized_basis(A) @@ -2142,7 +2114,6 @@ class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): The dimension of this algebra is `(n^2 + n) / 2`:: - sage: set_random_seed() sage: d = RealSymmetricEJA._max_random_instance_dimension() sage: n = RealSymmetricEJA._max_random_instance_size(d) sage: J = RealSymmetricEJA(n) @@ -2151,7 +2122,6 @@ class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): The Jordan multiplication is what we think it is:: - sage: set_random_seed() sage: J = RealSymmetricEJA.random_instance() sage: x,y = J.random_elements(2) sage: actual = (x*y).to_matrix() @@ -2243,7 +2213,6 @@ class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): The dimension of this algebra is `n^2`:: - sage: set_random_seed() sage: d = ComplexHermitianEJA._max_random_instance_dimension() sage: n = ComplexHermitianEJA._max_random_instance_size(d) sage: J = ComplexHermitianEJA(n) @@ -2252,7 +2221,6 @@ class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): The Jordan multiplication is what we think it is:: - sage: set_random_seed() sage: J = ComplexHermitianEJA.random_instance() sage: x,y = J.random_elements(2) sage: actual = (x*y).to_matrix() @@ -2329,7 +2297,6 @@ class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): The dimension of this algebra is `2*n^2 - n`:: - sage: set_random_seed() sage: d = QuaternionHermitianEJA._max_random_instance_dimension() sage: n = QuaternionHermitianEJA._max_random_instance_size(d) sage: J = QuaternionHermitianEJA(n) @@ -2338,7 +2305,6 @@ class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA): The Jordan multiplication is what we think it is:: - sage: set_random_seed() sage: J = QuaternionHermitianEJA.random_instance() sage: x,y = J.random_elements(2) sage: actual = (x*y).to_matrix() @@ -2711,7 +2677,6 @@ class BilinearFormEJA(RationalBasisEJA, ConcreteEJA): matrix. We opt not to orthonormalize the basis, because if we did, we would have to normalize the `s_{i}` in a similar manner:: - sage: set_random_seed() sage: n = ZZ.random_element(5) sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular') sage: B11 = matrix.identity(QQ,1) @@ -2873,7 +2838,6 @@ class JordanSpinEJA(BilinearFormEJA): Ensure that we have the usual inner product on `R^n`:: - sage: set_random_seed() sage: J = JordanSpinEJA.random_instance() sage: x,y = J.random_elements(2) sage: actual = x.inner_product(y) @@ -2994,7 +2958,6 @@ class CartesianProductEJA(FiniteDimensionalEJA): The Jordan product is inherited from our factors and implemented by our CombinatorialFreeModule Cartesian product superclass:: - sage: set_random_seed() sage: J1 = HadamardEJA(2) sage: J2 = RealSymmetricEJA(2) sage: J = cartesian_product([J1,J2]) @@ -3131,7 +3094,6 @@ class CartesianProductEJA(FiniteDimensionalEJA): The cached unit element is the same one that would be computed:: - sage: set_random_seed() # long time sage: J1 = random_eja() # long time sage: J2 = random_eja() # long time sage: J = cartesian_product([J1,J2]) # long time @@ -3350,7 +3312,6 @@ class CartesianProductEJA(FiniteDimensionalEJA): The answer never changes:: - sage: set_random_seed() sage: J1 = random_eja() sage: J2 = random_eja() sage: J = cartesian_product([J1,J2]) @@ -3440,7 +3401,6 @@ class CartesianProductEJA(FiniteDimensionalEJA): The answer never changes:: - sage: set_random_seed() sage: J1 = random_eja() sage: J2 = random_eja() sage: J = cartesian_product([J1,J2]) @@ -3453,7 +3413,6 @@ class CartesianProductEJA(FiniteDimensionalEJA): produce the identity map, and mismatching them should produce the zero map:: - sage: set_random_seed() sage: J1 = random_eja() sage: J2 = random_eja() sage: J = cartesian_product([J1,J2]) @@ -3558,7 +3517,6 @@ def random_eja(max_dimension=None, *args, **kwargs): TESTS:: - sage: set_random_seed() sage: n = ZZ.random_element(1,5) sage: J = random_eja(max_dimension=n, field=QQ, orthonormalize=False) sage: J.dimension() <= n diff --git a/mjo/eja/eja_element.py b/mjo/eja/eja_element.py index 47f6ff0..0fd1c5f 100644 --- a/mjo/eja/eja_element.py +++ b/mjo/eja/eja_element.py @@ -43,14 +43,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The definition of `x^2` is the unambiguous `x*x`:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: x*x == (x^2) True A few examples of power-associativity:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: x*(x*x)*(x*x) == x^5 True @@ -60,7 +58,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): We also know that powers operator-commute (Koecher, Chapter III, Corollary 1):: - sage: set_random_seed() sage: x = random_eja().random_element() sage: m = ZZ.random_element(0,10) sage: n = ZZ.random_element(0,10) @@ -107,7 +104,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): We should always get back an element of the algebra:: - sage: set_random_seed() sage: p = PolynomialRing(AA, 't').random_element() sage: J = random_eja() sage: x = J.random_element() @@ -157,7 +153,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The characteristic polynomial of an element should evaluate to zero on that element:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: p = x.characteristic_polynomial() sage: x.apply_univariate_polynomial(p).is_zero() @@ -239,7 +234,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Ensure that we can always compute an inner product, and that it gives us back a real number:: - sage: set_random_seed() sage: J = random_eja() sage: x,y = J.random_elements(2) sage: x.inner_product(y) in RLF @@ -267,7 +261,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The definition of a Jordan algebra says that any element operator-commutes with its square:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: x.operator_commutes_with(x^2) True @@ -276,7 +269,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Test Lemma 1 from Chapter III of Koecher:: - sage: set_random_seed() sage: u,v = random_eja().random_elements(2) sage: lhs = u.operator_commutes_with(u*v) sage: rhs = v.operator_commutes_with(u^2) @@ -286,7 +278,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Test the first polarization identity from my notes, Koecher Chapter III, or from Baes (2.3):: - sage: set_random_seed() sage: x,y = random_eja().random_elements(2) sage: Lx = x.operator() sage: Ly = y.operator() @@ -298,7 +289,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Test the second polarization identity from my notes or from Baes (2.4):: - sage: set_random_seed() sage: x,y,z = random_eja().random_elements(3) sage: Lx = x.operator() sage: Ly = y.operator() @@ -312,7 +302,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Test the third polarization identity from my notes or from Baes (2.5):: - sage: set_random_seed() sage: u,y,z = random_eja().random_elements(3) sage: Lu = u.operator() sage: Ly = y.operator() @@ -377,7 +366,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): An element is invertible if and only if its determinant is non-zero:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: x.is_invertible() == (x.det() != 0) True @@ -385,7 +373,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Ensure that the determinant is multiplicative on an associative subalgebra as in Faraut and Korányi's Proposition II.2.2:: - sage: set_random_seed() sage: J = random_eja().random_element().subalgebra_generated_by() sage: x,y = J.random_elements(2) sage: (x*y).det() == x.det()*y.det() @@ -393,7 +380,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The determinant in real matrix algebras is the usual determinant:: - sage: set_random_seed() sage: X = matrix.random(QQ,3) sage: X = X + X.T sage: J1 = RealSymmetricEJA(3) @@ -450,7 +436,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The inverse in the spin factor algebra is given in Alizadeh's Example 11.11:: - sage: set_random_seed() sage: J = JordanSpinEJA.random_instance() sage: x = J.random_element() sage: while not x.is_invertible(): @@ -475,14 +460,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The identity element is its own inverse:: - sage: set_random_seed() sage: J = random_eja() sage: J.one().inverse() == J.one() True If an element has an inverse, it acts like one:: - sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() sage: (not x.is_invertible()) or (x.inverse()*x == J.one()) @@ -490,7 +473,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The inverse of the inverse is what we started with:: - sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() sage: (not x.is_invertible()) or (x.inverse().inverse() == x) @@ -500,7 +482,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): of an element is the inverse of its left-multiplication operator applied to the algebra's identity, when that inverse exists:: - sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() sage: (not x.operator().is_invertible()) or ( @@ -510,7 +491,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Check that the fast (cached) and slow algorithms give the same answer:: - sage: set_random_seed() # long time sage: J = random_eja(field=QQ, orthonormalize=False) # long time sage: x = J.random_element() # long time sage: while not x.is_invertible(): # long time @@ -562,14 +542,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The identity element is always invertible:: - sage: set_random_seed() sage: J = random_eja() sage: J.one().is_invertible() True The zero element is never invertible in a non-trivial algebra:: - sage: set_random_seed() sage: J = random_eja() sage: (not J.is_trivial()) and J.zero().is_invertible() False @@ -577,7 +555,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Test that the fast (cached) and slow algorithms give the same answer:: - sage: set_random_seed() # long time sage: J = random_eja(field=QQ, orthonormalize=False) # long time sage: x = J.random_element() # long time sage: slow = x.is_invertible() # long time @@ -660,14 +637,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The identity element is minimal only in an EJA of rank one:: - sage: set_random_seed() sage: J = random_eja() sage: J.rank() == 1 or not J.one().is_primitive_idempotent() True A non-idempotent cannot be a minimal idempotent:: - sage: set_random_seed() sage: J = JordanSpinEJA(4) sage: x = J.random_element() sage: (not x.is_idempotent()) and x.is_primitive_idempotent() @@ -677,7 +652,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): idempotent if and only if it's idempotent with trace equal to unity:: - sage: set_random_seed() sage: J = JordanSpinEJA(4) sage: x = J.random_element() sage: expected = (x.is_idempotent() and x.trace() == 1) @@ -687,7 +661,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Primitive idempotents must be non-zero:: - sage: set_random_seed() sage: J = random_eja() sage: J.zero().is_idempotent() True @@ -744,14 +717,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The identity element is never nilpotent, except in a trivial EJA:: - sage: set_random_seed() sage: J = random_eja() sage: J.one().is_nilpotent() and not J.is_trivial() False The additive identity is always nilpotent:: - sage: set_random_seed() sage: random_eja().zero().is_nilpotent() True @@ -794,7 +765,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The zero element should never be regular, unless the parent algebra has dimension less than or equal to one:: - sage: set_random_seed() sage: J = random_eja() sage: J.dimension() <= 1 or not J.zero().is_regular() True @@ -802,7 +772,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The unit element isn't regular unless the algebra happens to consist of only its scalar multiples:: - sage: set_random_seed() sage: J = random_eja() sage: J.dimension() <= 1 or not J.one().is_regular() True @@ -837,7 +806,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): In the spin factor algebra (of rank two), all elements that aren't multiples of the identity are regular:: - sage: set_random_seed() sage: J = JordanSpinEJA.random_instance() sage: n = J.dimension() sage: x = J.random_element() @@ -849,7 +817,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The zero and unit elements are both of degree one in nontrivial algebras:: - sage: set_random_seed() sage: J = random_eja() sage: d = J.zero().degree() sage: (J.is_trivial() and d == 0) or d == 1 @@ -860,7 +827,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Our implementation agrees with the definition:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: x.degree() == x.minimal_polynomial().degree() True @@ -969,7 +935,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): always the same, except in trivial algebras where the minimal polynomial of the unit/zero element is ``1``:: - sage: set_random_seed() sage: J = random_eja() sage: mu = J.one().minimal_polynomial() sage: t = mu.parent().gen() @@ -983,7 +948,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The degree of an element is (by one definition) the degree of its minimal polynomial:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: x.degree() == x.minimal_polynomial().degree() True @@ -994,7 +958,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): identity. We require the dimension of the algebra to be at least two here so that said elements actually exist:: - sage: set_random_seed() sage: d_max = JordanSpinEJA._max_random_instance_dimension() sage: n = ZZ.random_element(2, max(2,d_max)) sage: J = JordanSpinEJA(n) @@ -1011,7 +974,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The minimal polynomial should always kill its element:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: p = x.minimal_polynomial() sage: x.apply_univariate_polynomial(p) @@ -1020,7 +982,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The minimal polynomial is invariant under a change of basis, and in particular, a re-scaling of the basis:: - sage: set_random_seed() sage: d_max = RealSymmetricEJA._max_random_instance_dimension() sage: d = ZZ.random_element(1, d_max) sage: n = RealSymmetricEJA._max_random_instance_size(d) @@ -1167,7 +1128,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): TESTS:: - sage: set_random_seed() sage: J = random_eja() sage: x,y = J.random_elements(2) sage: x.operator()(y) == x*y @@ -1196,7 +1156,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The explicit form in the spin factor algebra is given by Alizadeh's Example 11.12:: - sage: set_random_seed() sage: x = JordanSpinEJA.random_instance().random_element() sage: x_vec = x.to_vector() sage: Q = matrix.identity(x.base_ring(), 0) @@ -1216,7 +1175,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Test all of the properties from Theorem 11.2 in Alizadeh:: - sage: set_random_seed() sage: J = random_eja() sage: x,y = J.random_elements(2) sage: Lx = x.operator() @@ -1410,7 +1368,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): This subalgebra, being composed of only powers, is associative:: - sage: set_random_seed() sage: x0 = random_eja().random_element() sage: A = x0.subalgebra_generated_by() sage: x,y,z = A.random_elements(3) @@ -1420,7 +1377,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): Squaring in the subalgebra should work the same as in the superalgebra:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: A = x.subalgebra_generated_by() sage: A(x^2) == A(x)*A(x) @@ -1431,7 +1387,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): element... unless the original algebra was trivial, in which case the subalgebra is trivial too:: - sage: set_random_seed() sage: A = random_eja().zero().subalgebra_generated_by() sage: (A.is_trivial() and A.dimension() == 0) or A.dimension() == 1 True @@ -1462,7 +1417,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): where there are non-nilpotent elements, or that we get the dumb solution in the trivial algebra:: - sage: set_random_seed() sage: J = random_eja() sage: x = J.random_element() sage: while x.is_nilpotent() and not J.is_trivial(): @@ -1546,14 +1500,12 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The trace of an element is a real number:: - sage: set_random_seed() sage: J = random_eja() sage: J.random_element().trace() in RLF True The trace is linear:: - sage: set_random_seed() sage: J = random_eja() sage: x,y = J.random_elements(2) sage: alpha = J.base_ring().random_element() @@ -1589,7 +1541,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement): The trace inner product is commutative, bilinear, and associative:: - sage: set_random_seed() sage: J = random_eja() sage: x,y,z = J.random_elements(3) sage: # commutative diff --git a/mjo/eja/eja_operator.py b/mjo/eja/eja_operator.py index 7100ea6..a8beed6 100644 --- a/mjo/eja/eja_operator.py +++ b/mjo/eja/eja_operator.py @@ -470,7 +470,6 @@ class FiniteDimensionalEJAOperator(Map): The left-multiplication-by-zero operation on a given algebra is its zero map:: - sage: set_random_seed() sage: J = random_eja() sage: J.zero().operator().is_zero() True @@ -510,7 +509,6 @@ class FiniteDimensionalEJAOperator(Map): The identity operator is its own inverse:: - sage: set_random_seed() sage: J = random_eja() sage: idJ = J.one().operator() sage: idJ.inverse() == idJ @@ -518,7 +516,6 @@ class FiniteDimensionalEJAOperator(Map): The inverse of the inverse is the operator we started with:: - sage: set_random_seed() sage: x = random_eja().random_element() sage: L = x.operator() sage: not L.is_invertible() or (L.inverse().inverse() == L) @@ -561,14 +558,12 @@ class FiniteDimensionalEJAOperator(Map): The identity operator is always invertible:: - sage: set_random_seed() sage: J = random_eja() sage: J.one().operator().is_invertible() True The zero operator is never invertible in a nontrivial algebra:: - sage: set_random_seed() sage: J = random_eja() sage: not J.is_trivial() and J.zero().operator().is_invertible() False diff --git a/mjo/eja/eja_subalgebra.py b/mjo/eja/eja_subalgebra.py index c8bf548..1286a16 100644 --- a/mjo/eja/eja_subalgebra.py +++ b/mjo/eja/eja_subalgebra.py @@ -15,7 +15,6 @@ class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement): The matrix representation of an element in the subalgebra is the same as its matrix representation in the superalgebra:: - sage: set_random_seed() sage: x = random_eja(field=QQ,orthonormalize=False).random_element() sage: A = x.subalgebra_generated_by(orthonormalize=False) sage: y = A.random_element() @@ -28,7 +27,6 @@ class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement): works like it does in the superalgebra, even if we orthonormalize our basis:: - sage: set_random_seed() sage: x = random_eja(field=AA).random_element() sage: A = x.subalgebra_generated_by(orthonormalize=True) sage: y = A.random_element() @@ -71,7 +69,6 @@ class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement): We can convert back and forth faithfully:: - sage: set_random_seed() sage: J = random_eja(field=QQ, orthonormalize=False) sage: x = J.random_element() sage: A = x.subalgebra_generated_by(orthonormalize=False) diff --git a/mjo/hurwitz.py b/mjo/hurwitz.py index 10b308d..ff84b51 100644 --- a/mjo/hurwitz.py +++ b/mjo/hurwitz.py @@ -23,7 +23,6 @@ class Octonion(IndexedFreeModuleElement): Conjugating twice gets you the original element:: - sage: set_random_seed() sage: O = Octonions() sage: x = O.random_element() sage: x.conjugate().conjugate() == x @@ -58,7 +57,6 @@ class Octonion(IndexedFreeModuleElement): This method is idempotent:: - sage: set_random_seed() sage: O = Octonions() sage: x = O.random_element() sage: x.real().real() == x.real() @@ -91,7 +89,6 @@ class Octonion(IndexedFreeModuleElement): This method is idempotent:: - sage: set_random_seed() sage: O = Octonions() sage: x = O.random_element() sage: x.imag().imag() == x.imag() @@ -121,7 +118,6 @@ class Octonion(IndexedFreeModuleElement): The norm is nonnegative and belongs to the base field:: - sage: set_random_seed() sage: O = Octonions() sage: n = O.random_element().norm() sage: n >= 0 and n in O.base_ring() @@ -129,7 +125,6 @@ class Octonion(IndexedFreeModuleElement): The norm is homogeneous:: - sage: set_random_seed() sage: O = Octonions() sage: x = O.random_element() sage: alpha = O.base_ring().random_element() @@ -167,7 +162,6 @@ class Octonion(IndexedFreeModuleElement): TESTS:: - sage: set_random_seed() sage: O = Octonions() sage: x = O.random_element() sage: x.is_zero() or ( x*x.inverse() == O.one() ) @@ -241,7 +235,6 @@ class Octonions(CombinatorialFreeModule): This gives the correct unit element:: - sage: set_random_seed() sage: O = Octonions() sage: x = O.random_element() sage: x*O.one() == x and O.one()*x == x @@ -529,7 +522,6 @@ class OctonionMatrixAlgebra(HurwitzMatrixAlgebra): TESTS:: - sage: set_random_seed() sage: A = OctonionMatrixAlgebra(ZZ.random_element(10)) sage: x = A.random_element() sage: x*A.one() == x and A.one()*x == x @@ -622,7 +614,6 @@ class QuaternionMatrixAlgebra(HurwitzMatrixAlgebra): TESTS:: - sage: set_random_seed() sage: A = QuaternionMatrixAlgebra(ZZ.random_element(10)) sage: x = A.random_element() sage: x*A.one() == x and A.one()*x == x @@ -732,7 +723,6 @@ class ComplexMatrixAlgebra(HurwitzMatrixAlgebra): TESTS:: - sage: set_random_seed() sage: A = ComplexMatrixAlgebra(ZZ.random_element(10)) sage: x = A.random_element() sage: x*A.one() == x and A.one()*x == x diff --git a/mjo/matrix_algebra.py b/mjo/matrix_algebra.py index 69d9aeb..bc46c2a 100644 --- a/mjo/matrix_algebra.py +++ b/mjo/matrix_algebra.py @@ -148,7 +148,6 @@ class MatrixAlgebraElement(IndexedFreeModuleElement): TESTS:: - sage: set_random_seed() sage: entries = QuaternionAlgebra(QQ,-1,-1) sage: M = MatrixAlgebra(3, entries, QQ) sage: M.random_element().matrix_space() == M diff --git a/mjo/polynomial.py b/mjo/polynomial.py index 55ada9a..e50fece 100644 --- a/mjo/polynomial.py +++ b/mjo/polynomial.py @@ -135,7 +135,6 @@ def multidiv(f, gs): If we get a zero remainder, then the numerator should belong to the ideal generated by the denominators:: - sage: set_random_seed() sage: R = PolynomialRing(QQ, 'x,y,z') sage: x,y,z = R.gens() sage: s = ZZ.random_element(1,5).abs() @@ -150,7 +149,6 @@ def multidiv(f, gs): times the denominators, and the remainder's monomials aren't divisible by the leading term of any denominator:: - sage: set_random_seed() sage: R = PolynomialRing(QQ, 'x,y,z') sage: s = ZZ.random_element(1,5).abs() sage: gs = [ R.random_element() for idx in range(s) ] @@ -167,7 +165,6 @@ def multidiv(f, gs): should always get a zero remainder if we divide an element of a monomial ideal by its generators:: - sage: set_random_seed() sage: R = PolynomialRing(QQ,'x,y,z') sage: gs = R.random_element().monomials() sage: I = R.ideal(gs)