From: Michael Orlitzky Date: Mon, 30 Nov 2020 15:07:30 +0000 (-0500) Subject: eja: get rid of the old rational basis constructor. X-Git-Url: http://gitweb.michael.orlitzky.com/?p=sage.d.git;a=commitdiff_plain;h=47fae19a7521704e71ef6d8e0e1e9afca28820d2 eja: get rid of the old rational basis constructor. --- diff --git a/mjo/eja/eja_algebra.py b/mjo/eja/eja_algebra.py index 14666c2..b83f4a5 100644 --- a/mjo/eja/eja_algebra.py +++ b/mjo/eja/eja_algebra.py @@ -214,6 +214,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): elt = self.from_vector(multiplication_table[i][j]) self._multiplication_table[i][j] = elt + self._multiplication_table = tuple(map(tuple, self._multiplication_table)) + # Save our inner product as a matrix, since the efficiency of # matrix multiplication will usually outweigh the fact that we # have to store a redundant upper- or lower-triangular part. @@ -221,7 +223,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule): # in fact) in case some e.g. matrix multiplication routine can # take advantage of it. self._inner_product_matrix = matrix(field, inner_product_table) - self._inner_product_matrix._cache = {'hermitian': False} + self._inner_product_matrix._cache = {'hermitian': True} + self._inner_product_matrix.set_immutable() if check_axioms: if not self._is_jordanian(): @@ -1176,6 +1179,50 @@ class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlge self._deortho_multiplication_table = None self._deortho_inner_product_table = None + if orthonormalize: + # Compute the deorthonormalized tables before we orthonormalize + # the given basis. + W = V.span_of_basis( vector_basis ) + + # TODO: use symmetry + self._deortho_multiplication_table = [ [0 for j in range(n)] + for i in range(n) ] + self._deortho_inner_product_table = [ [0 for j in range(n)] + for i in range(n) ] + + # Note: the Jordan and inner-products are defined in terms + # of the ambient basis. It's important that their arguments + # are in ambient coordinates as well. + for i in range(n): + for j in range(i+1): + # given basis w.r.t. ambient coords + q_i = vector_basis[i] + q_j = vector_basis[j] + + if basis_is_matrices: + q_i = _vec2mat(q_i) + q_j = _vec2mat(q_j) + + elt = jordan_product(q_i, q_j) + ip = inner_product(q_i, q_j) + + if basis_is_matrices: + # do another mat2vec because the multiplication + # table is in terms of vectors + elt = _mat2vec(elt) + + # TODO: use symmetry + elt = W.coordinate_vector(elt) + self._deortho_multiplication_table[i][j] = elt + self._deortho_multiplication_table[j][i] = elt + self._deortho_inner_product_table[i][j] = ip + self._deortho_inner_product_table[j][i] = ip + + if self._deortho_multiplication_table is not None: + self._deortho_multiplication_table = tuple(map(tuple, self._deortho_multiplication_table)) + if self._deortho_inner_product_table is not None: + self._deortho_inner_product_table = tuple(map(tuple, self._deortho_inner_product_table)) + if orthonormalize: from mjo.eja.eja_utils import gram_schmidt vector_basis = gram_schmidt(vector_basis, inner_product) @@ -1190,8 +1237,9 @@ class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlge W = V.span_of_basis( vector_basis ) - mult_table = [ [0 for i in range(n)] for j in range(n) ] - ip_table = [ [0 for i in range(n)] for j in range(n) ] + # TODO: use symmetry + mult_table = [ [0 for j in range(n)] for i in range(n) ] + ip_table = [ [0 for j in range(n)] for i in range(n) ] # Note: the Jordan and inner- products are defined in terms # of the ambient basis. It's important that their arguments @@ -1214,6 +1262,7 @@ class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlge # table is in terms of vectors elt = _mat2vec(elt) + # TODO: use symmetry elt = W.coordinate_vector(elt) mult_table[i][j] = elt mult_table[j][i] = elt @@ -1235,29 +1284,29 @@ class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlge check_field, check_axioms) -class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra): - r""" - Algebras whose basis consists of vectors with rational - entries. Equivalently, algebras whose multiplication tables - contain only rational coefficients. - - When an EJA has a basis that can be made rational, we can speed up - the computation of its characteristic polynomial by doing it over - ``QQ``. All of the named EJA constructors that we provide fall - into this category. - """ @cached_method def _charpoly_coefficients(self): r""" - Override the parent method with something that tries to compute - over a faster (non-extension) field. - SETUP:: - sage: from mjo.eja.eja_algebra import JordanSpinEJA + sage: from mjo.eja.eja_algebra import (BilinearFormEJA, + ....: JordanSpinEJA) EXAMPLES: + The returned coefficients should be the same as if we'd never + orthonormalized the basis to begin with:: + + sage: B = matrix(QQ, [[1, 0, 0], + ....: [0, 25, -32], + ....: [0, -32, 41] ]) + sage: J1 = BilinearFormEJA(B) + sage: J2 = BilinearFormEJA(B,QQ,orthonormalize=False) + sage: J1._charpoly_coefficients() + (X1^2 - 25*X2^2 + 64*X2*X3 - 41*X3^2, -2*X1) + sage: J2._charpoly_coefficients() + (X1^2 - 25*X2^2 + 64*X2*X3 - 41*X3^2, -2*X1) + The base ring of the resulting polynomial coefficients is what it should be, and not the rationals (unless the algebra was already over the rationals):: @@ -1270,30 +1319,21 @@ class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebr Algebraic Real Field sage: a0.base_ring() Algebraic Real Field - """ if self.base_ring() is QQ: # There's no need to construct *another* algebra over the # rationals if this one is already over the rationals. - superclass = super(RationalBasisEuclideanJordanAlgebra, self) + superclass = super(RationalBasisEuclideanJordanAlgebraNg, self) return superclass._charpoly_coefficients() - mult_table = tuple( - tuple(map(lambda x: x.to_vector(), ls)) - for ls in self._multiplication_table - ) - # Do the computation over the rationals. The answer will be - # the same, because our basis coordinates are (essentially) - # rational. + # the same, because all we've done is a change of basis. J = FiniteDimensionalEuclideanJordanAlgebra(QQ, - mult_table, - check_field=False, - check_axioms=False) + self._deortho_multiplication_table, + self._deortho_inner_product_table) a = J._charpoly_coefficients() return tuple(map(lambda x: x.change_ring(self.base_ring()), a)) - class ConcreteEuclideanJordanAlgebra: r""" A class for the Euclidean Jordan algebras that we know by name.