X-Git-Url: http://gitweb.michael.orlitzky.com/?p=sage.d.git;a=blobdiff_plain;f=mjo%2Feja%2FTODO;h=13b00ac6a3056eaf623ac5c2905be6c7d049706c;hp=3c63d3b97796031de5ecf914f3051d8e47b93967;hb=db1f7761ebf564221669137ae07476ea45d82a2c;hpb=5db579120b28cbf24ef89b122d51d036e69f3190 diff --git a/mjo/eja/TODO b/mjo/eja/TODO index 3c63d3b..13b00ac 100644 --- a/mjo/eja/TODO +++ b/mjo/eja/TODO @@ -1,38 +1,37 @@ -1. Add CartesianProductEJA. +1. Add cartesian products to random_eja(). 2. Add references and start citing them. -3. Implement the octonion simple EJA. +3. Implement the octonion simple EJA. We don't actually need octonions + for this to work, only their real embedding (some 8x8 monstrosity). -4. Override random_instance(), one(), et cetera in DirectSumEJA. +4. Pre-cache charpoly for some small algebras? -5. Switch to QQ in *all* algebras for _charpoly_coefficients(). - This only works when we know that the basis can be rationalized... - which is the case at least for the concrete EJAs we provide, - but not in general. +RealSymmetricEJA(4): -6. Pass already_echelonized (default: False) and echelon_basis - (default: None) into the subalgebra constructor. The value of - already_echelonized can be passed to V.span_of_basis() to save - some time, and usinf e.g. FreeModule_submodule_with_basis_field - we may somehow be able to pass the echelon basis straight in to - save time. +sage: F = J.base_ring() +sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] - This may require supporting "basis" as a list of basis vectors - (as opposed to superalgebra elements) in the subalgebra constructor. +5. Profile the construction of "large" matrix algebras (like the + 15-dimensional QuaternionHermitianAlgebra(3)) to find out why + they're so slow. -7. The inner product should be an *argument* to the main EJA - constructor. Afterwards, the basis normalization step should be - optional (and enabled by default) for ALL algebras, since any - algebra can have a nonstandard inner-product and its basis can be - normalized with respect to that inner- product. For example, the - HadamardEJA could be equipped with an inner- product that is twice - the usual one. Then for the basis to be orthonormal, we would need - to divide e.g. (1,0,0) by <(1,0,0),(1,0,0)> = 2 to normalize it. +6. Instead of storing a basis multiplication matrix, just make + product_on_basis() a cached method and manually cache its + entries. The cython cached method lookup should be faster than a + python-based matrix lookup anyway. -8. Use charpoly for inverse itself? +7. What the ever-loving fuck is this shit? -9. Pre-cache charpoly for some small algebras? + sage: O = Octonions(QQ) + sage: e0 = O.monomial(0) + sage: e0*[[[[]]]] + [[[[]]]]*e0 -10. Compute the scalar in the general natural_inner_product() for - matrices, so no overrides are necessary. \ No newline at end of file +8. In fact, could my octonion matrix algebra be generalized for any + algebra of matrices over the reals whose entries are not real? Then + we wouldn't need real embeddings at all. They might even be fricking + vector spaces if I did that... + +9. Add HurwitzMatrixAlgebra subclass between MatrixAlgebra and + OctonionMatrixAlgebra.