]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/hurwitz.py
Reorganize the Hurwitz (matrix) algebra stuff.
[sage.d.git] / mjo / hurwitz.py
diff --git a/mjo/hurwitz.py b/mjo/hurwitz.py
new file mode 100644 (file)
index 0000000..ff1792b
--- /dev/null
@@ -0,0 +1,569 @@
+from sage.misc.cachefunc import cached_method
+from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
+from sage.combinat.free_module import CombinatorialFreeModule
+from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
+from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.rings.all import AA, ZZ
+from sage.matrix.matrix_space import MatrixSpace
+from sage.misc.table import table
+
+from mjo.matrix_algebra import MatrixAlgebra, MatrixAlgebraElement
+
+class Octonion(IndexedFreeModuleElement):
+    def conjugate(self):
+        r"""
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        EXAMPLES::
+
+            sage: O = Octonions()
+            sage: x = sum(O.gens())
+            sage: x.conjugate()
+            e0 - e1 - e2 - e3 - e4 - e5 - e6 - e7
+
+        TESTS::
+
+        Conjugating twice gets you the original element::
+
+            sage: set_random_seed()
+            sage: O = Octonions()
+            sage: x = O.random_element()
+            sage: x.conjugate().conjugate() == x
+            True
+
+        """
+        C = MatrixSpace(ZZ,8).diagonal_matrix((1,-1,-1,-1,-1,-1,-1,-1))
+        return self.parent().from_vector(C*self.to_vector())
+
+    def real(self):
+        r"""
+        Return the real part of this octonion.
+
+        The real part of an octonion is its projection onto the span
+        of the first generator. In other words, the "first dimension"
+        is real and the others are imaginary.
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        EXAMPLES::
+
+            sage: O = Octonions()
+            sage: x = sum(O.gens())
+            sage: x.real()
+            e0
+
+        TESTS:
+
+        This method is idempotent::
+
+            sage: set_random_seed()
+            sage: O = Octonions()
+            sage: x = O.random_element()
+            sage: x.real().real() == x.real()
+            True
+
+        """
+        return (self + self.conjugate())/2
+
+    def imag(self):
+        r"""
+        Return the imaginary part of this octonion.
+
+        The imaginary part of an octonion is its projection onto the
+        orthogonal complement of the span of the first generator. In
+        other words, the "first dimension" is real and the others are
+        imaginary.
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        EXAMPLES::
+
+            sage: O = Octonions()
+            sage: x = sum(O.gens())
+            sage: x.imag()
+            e1 + e2 + e3 + e4 + e5 + e6 + e7
+
+        TESTS:
+
+        This method is idempotent::
+
+            sage: set_random_seed()
+            sage: O = Octonions()
+            sage: x = O.random_element()
+            sage: x.imag().imag() == x.imag()
+            True
+
+        """
+        return (self - self.conjugate())/2
+
+    def _norm_squared(self):
+        return (self*self.conjugate()).coefficient(0)
+
+    def norm(self):
+        r"""
+        Return the norm of this octonion.
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        EXAMPLES::
+
+            sage: O = Octonions()
+            sage: O.one().norm()
+            1
+
+        TESTS:
+
+        The norm is nonnegative and belongs to the base field::
+
+            sage: set_random_seed()
+            sage: O = Octonions()
+            sage: n = O.random_element().norm()
+            sage: n >= 0 and n in O.base_ring()
+            True
+
+        The norm is homogeneous::
+
+            sage: set_random_seed()
+            sage: O = Octonions()
+            sage: x = O.random_element()
+            sage: alpha = O.base_ring().random_element()
+            sage: (alpha*x).norm() == alpha.abs()*x.norm()
+            True
+
+        """
+        return self._norm_squared().sqrt()
+
+    # The absolute value notation is typically used for complex numbers...
+    # and norm() isn't supported in AA, so this lets us use abs() in all
+    # of the division algebras we need.
+    abs = norm
+
+    def inverse(self):
+        r"""
+        Return the inverse of this element if it exists.
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        EXAMPLES::
+
+            sage: O = Octonions()
+            sage: x = sum(O.gens())
+            sage: x*x.inverse() == O.one()
+            True
+
+        ::
+
+            sage: O = Octonions()
+            sage: O.one().inverse() == O.one()
+            True
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: O = Octonions()
+            sage: x = O.random_element()
+            sage: x.is_zero() or ( x*x.inverse() == O.one() )
+            True
+
+        """
+        if self.is_zero():
+            raise ValueError("zero is not invertible")
+        return self.conjugate()/self._norm_squared()
+
+
+    def cayley_dickson(self, Q=None):
+        r"""
+        Return the Cayley-Dickson representation of this element in terms
+        of the quaternion algebra ``Q``.
+
+        The Cayley-Dickson representation is an identification of
+        octionions `x` and `y` with pairs of quaternions `(a,b)` and
+        `(c,d)` respectively such that:
+
+        * `x + y = (a+b, c+d)`
+        * `xy` = (ac - \bar{d}*b, da + b\bar{c})`
+        * `\bar{x} = (a,-b)`
+
+        where `\bar{x}` denotes the conjugate of `x`.
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        EXAMPLES::
+
+            sage: O = Octonions()
+            sage: x = sum(O.gens())
+            sage: x.cayley_dickson()
+            (1 + i + j + k, 1 + i + j + k)
+
+        """
+        if Q is None:
+            Q = QuaternionAlgebra(self.base_ring(), -1, -1)
+
+        i,j,k = Q.gens()
+        a = (self.coefficient(0)*Q.one() +
+             self.coefficient(1)*i +
+             self.coefficient(2)*j +
+             self.coefficient(3)*k )
+        b = (self.coefficient(4)*Q.one() +
+             self.coefficient(5)*i +
+             self.coefficient(6)*j +
+             self.coefficient(7)*k )
+
+        from sage.categories.sets_cat import cartesian_product
+        P = cartesian_product([Q,Q])
+        return P((a,b))
+
+
+class Octonions(CombinatorialFreeModule):
+    r"""
+    SETUP::
+
+        sage: from mjo.hurwitz import Octonions
+
+    EXAMPLES::
+
+        sage: Octonions()
+        Octonion algebra with base ring Algebraic Real Field
+        sage: Octonions(field=QQ)
+        Octonion algebra with base ring Rational Field
+
+    """
+    def __init__(self,
+                 field=AA,
+                 prefix="e"):
+
+        # Not associative, not commutative
+        category = MagmaticAlgebras(field).FiniteDimensional()
+        category = category.WithBasis().Unital()
+
+        super().__init__(field,
+                         range(8),
+                         element_class=Octonion,
+                         category=category,
+                         prefix=prefix,
+                         bracket=False)
+
+        # The product of each basis element is plus/minus another
+        # basis element that can simply be looked up on
+        # https://en.wikipedia.org/wiki/Octonion
+        e0, e1, e2, e3, e4, e5, e6, e7 = self.gens()
+        self._multiplication_table = (
+            (e0, e1, e2, e3, e4, e5, e6, e7),
+            (e1,-e0, e3,-e2, e5,-e4,-e7, e6),
+            (e2,-e3,-e0, e1, e6, e7,-e4,-e5),
+            (e3, e2,-e1,-e0, e7,-e6, e5,-e4),
+            (e4,-e5,-e6,-e7,-e0, e1, e2, e3),
+            (e5, e4,-e7, e6,-e1,-e0,-e3, e2),
+            (e6, e7, e4,-e5,-e2, e3,-e0,-e1),
+            (e7,-e6, e5, e4,-e3,-e2, e1,-e0),
+        )
+
+    def product_on_basis(self, i, j):
+        return self._multiplication_table[i][j]
+
+    def one_basis(self):
+        r"""
+        Return the monomial index (basis element) corresponding to the
+        octonion unit element.
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        TESTS:
+
+        This gives the correct unit element::
+
+            sage: set_random_seed()
+            sage: O = Octonions()
+            sage: x = O.random_element()
+            sage: x*O.one() == x and O.one()*x == x
+            True
+
+        """
+        return 0
+
+    def _repr_(self):
+        return ("Octonion algebra with base ring %s" % self.base_ring())
+
+    def multiplication_table(self):
+        """
+        Return a visual representation of this algebra's multiplication
+        table (on basis elements).
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions
+
+        EXAMPLES:
+
+        The multiplication table is what Wikipedia says it is::
+
+            sage: Octonions().multiplication_table()
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | *  || e0 | e1  | e2  | e3  | e4  | e5  | e6  | e7  |
+            +====++====+=====+=====+=====+=====+=====+=====+=====+
+            | e0 || e0 | e1  | e2  | e3  | e4  | e5  | e6  | e7  |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | e1 || e1 | -e0 | e3  | -e2 | e5  | -e4 | -e7 | e6  |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | e2 || e2 | -e3 | -e0 | e1  | e6  | e7  | -e4 | -e5 |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | e3 || e3 | e2  | -e1 | -e0 | e7  | -e6 | e5  | -e4 |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | e4 || e4 | -e5 | -e6 | -e7 | -e0 | e1  | e2  | e3  |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | e5 || e5 | e4  | -e7 | e6  | -e1 | -e0 | -e3 | e2  |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | e6 || e6 | e7  | e4  | -e5 | -e2 | e3  | -e0 | -e1 |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+            | e7 || e7 | -e6 | e5  | e4  | -e3 | -e2 | e1  | -e0 |
+            +----++----+-----+-----+-----+-----+-----+-----+-----+
+
+        """
+        n = self.dimension()
+        # Prepend the header row.
+        M = [["*"] + list(self.gens())]
+
+        # And to each subsequent row, prepend an entry that belongs to
+        # the left-side "header column."
+        M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
+                                    for j in range(n) ]
+               for i in range(n) ]
+
+        return table(M, header_row=True, header_column=True, frame=True)
+
+
+
+
+
+class HurwitzMatrixAlgebraElement(MatrixAlgebraElement):
+    def is_hermitian(self):
+        r"""
+
+        SETUP::
+
+            sage: from mjo.hurwitz import HurwitzMatrixAlgebra
+
+        EXAMPLES::
+
+            sage: A = HurwitzMatrixAlgebra(QQbar, ZZ, 2)
+            sage: M = A([ [ 0,I],
+            ....:         [-I,0] ])
+            sage: M.is_hermitian()
+            True
+
+        """
+        return all( self[i,j] == self[j,i].conjugate()
+                    for i in range(self.nrows())
+                    for j in range(self.ncols()) )
+
+
+class HurwitzMatrixAlgebra(MatrixAlgebra):
+    r"""
+    A class of matrix algebras whose entries come from a Hurwitz
+    algebra.
+
+    For our purposes, we consider "a Hurwitz" algebra to be the real
+    or complex numbers, the quaternions, or the octonions. These are
+    typically also referred to as the Euclidean Hurwitz algebras, or
+    the normed division algebras.
+
+    By the Cayley-Dickson construction, each Hurwitz algebra is an
+    algebra over the real numbers, so we restrict the scalar field in
+    this case to be real. This also allows us to more accurately
+    produce the generators of the matrix algebra.
+    """
+    Element = HurwitzMatrixAlgebraElement
+
+    def __init__(self, entry_algebra, scalars, n, **kwargs):
+        from sage.rings.all import RR
+        if not scalars.is_subring(RR):
+            # Not perfect, but it's what we're using.
+            raise ValueError("scalar field is not real")
+
+        super().__init__(entry_algebra, scalars, n, **kwargs)
+
+    def entry_algebra_gens(self):
+        r"""
+        Return the generators of (that is, a basis for) the entries of
+        this matrix algebra.
+
+        This works around the inconsistency in the ``gens()`` methods
+        of the real/complex numbers, quaternions, and octonions.
+
+        SETUP::
+
+            sage: from mjo.hurwitz import Octonions, HurwitzMatrixAlgebra
+
+        EXAMPLES:
+
+        The inclusion of the unit element is inconsistent across
+        (subalgebras of) Hurwitz algebras::
+
+            sage: AA.gens()
+            (1,)
+            sage: QQbar.gens()
+            (I,)
+            sage: QuaternionAlgebra(AA,1,-1).gens()
+            [i, j, k]
+            sage: Octonions().gens()
+            (e0, e1, e2, e3, e4, e5, e6, e7)
+
+        The unit element is always returned by this method, so the
+        sets of generators have cartinality 1,2,4, and 8 as you'd
+        expect::
+
+            sage: HurwitzMatrixAlgebra(AA, AA, 2).entry_algebra_gens()
+            (1,)
+            sage: HurwitzMatrixAlgebra(QQbar, AA, 2).entry_algebra_gens()
+            (1, I)
+            sage: Q = QuaternionAlgebra(AA,-1,-1)
+            sage: HurwitzMatrixAlgebra(Q, AA, 2).entry_algebra_gens()
+            (1, i, j, k)
+            sage: O = Octonions()
+            sage: HurwitzMatrixAlgebra(O, AA, 2).entry_algebra_gens()
+            (e0, e1, e2, e3, e4, e5, e6, e7)
+
+        """
+        gs = self.entry_algebra().gens()
+        one = self.entry_algebra().one()
+        if one in gs:
+            return gs
+        else:
+            return (one,) + tuple(gs)
+
+
+
+class OctonionMatrixAlgebra(HurwitzMatrixAlgebra):
+    r"""
+    The algebra of ``n``-by-``n`` matrices with octonion entries over
+    (a subfield of) the real numbers.
+
+    The usual matrix spaces in SageMath don't support octonion entries
+    because they assume that the entries of the matrix come from a
+    commutative and associative ring, and the octonions are neither.
+
+    SETUP::
+
+        sage: from mjo.hurwitz import OctonionMatrixAlgebra
+
+    EXAMPLES::
+
+        sage: OctonionMatrixAlgebra(3)
+        Module of 3 by 3 matrices with entries in Octonion algebra with base
+        ring Algebraic Real Field over the scalar ring Algebraic Real Field
+        sage: OctonionMatrixAlgebra(3,QQ)
+        Module of 3 by 3 matrices with entries in Octonion algebra with base
+        ring Rational Field over the scalar ring Rational Field
+
+    ::
+
+        sage: A = OctonionMatrixAlgebra(2)
+        sage: e0,e1,e2,e3,e4,e5,e6,e7 = A.entry_algebra().gens()
+        sage: A([ [e0+e4, e1+e5],
+        ....:     [e2-e6, e3-e7] ])
+        +---------+---------+
+        | e0 + e4 | e1 + e5 |
+        +---------+---------+
+        | e2 - e6 | e3 - e7 |
+        +---------+---------+
+
+    ::
+
+        sage: A1 = OctonionMatrixAlgebra(1,QQ)
+        sage: A2 = OctonionMatrixAlgebra(1,QQ)
+        sage: cartesian_product([A1,A2])
+        Module of 1 by 1 matrices with entries in Octonion algebra with
+        base ring Rational Field over the scalar ring Rational Field (+)
+        Module of 1 by 1 matrices with entries in Octonion algebra with
+        base ring Rational Field over the scalar ring Rational Field
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: A = OctonionMatrixAlgebra(ZZ.random_element(10))
+        sage: x = A.random_element()
+        sage: x*A.one() == x and A.one()*x == x
+        True
+
+    """
+    def __init__(self, n, scalars=AA, prefix="E", **kwargs):
+        super().__init__(Octonions(field=scalars),
+                         scalars,
+                         n,
+                         prefix=prefix,
+                         **kwargs)
+
+class QuaternionMatrixAlgebra(HurwitzMatrixAlgebra):
+    r"""
+    The algebra of ``n``-by-``n`` matrices with quaternion entries over
+    (a subfield of) the real numbers.
+
+    The usual matrix spaces in SageMath don't support quaternion entries
+    because they assume that the entries of the matrix come from a
+    commutative ring, and the quaternions are not commutative.
+
+    SETUP::
+
+        sage: from mjo.hurwitz import QuaternionMatrixAlgebra
+
+    EXAMPLES::
+
+        sage: QuaternionMatrixAlgebra(3)
+        Module of 3 by 3 matrices with entries in Quaternion
+        Algebra (-1, -1) with base ring Algebraic Real Field
+        over the scalar ring Algebraic Real Field
+        sage: QuaternionMatrixAlgebra(3,QQ)
+        Module of 3 by 3 matrices with entries in Quaternion
+        Algebra (-1, -1) with base ring Rational Field over
+        the scalar ring Rational Field
+
+    ::
+
+        sage: A = QuaternionMatrixAlgebra(2)
+        sage: i,j,k = A.entry_algebra().gens()
+        sage: A([ [1+i, j-2],
+        ....:     [k,   k+j] ])
+        +-------+--------+
+        | 1 + i | -2 + j |
+        +-------+--------+
+        | k     | j + k  |
+        +-------+--------+
+
+    ::
+
+        sage: A1 = QuaternionMatrixAlgebra(1,QQ)
+        sage: A2 = QuaternionMatrixAlgebra(2,QQ)
+        sage: cartesian_product([A1,A2])
+        Module of 1 by 1 matrices with entries in Quaternion Algebra
+        (-1, -1) with base ring Rational Field over the scalar ring
+        Rational Field (+) Module of 2 by 2 matrices with entries in
+        Quaternion Algebra (-1, -1) with base ring Rational Field over
+        the scalar ring Rational Field
+
+    TESTS::
+
+        sage: set_random_seed()
+        sage: A = QuaternionMatrixAlgebra(ZZ.random_element(10))
+        sage: x = A.random_element()
+        sage: x*A.one() == x and A.one()*x == x
+        True
+
+    """
+    def __init__(self, n, scalars=AA, **kwargs):
+        # The -1,-1 gives us the "usual" definition of quaternion
+        Q = QuaternionAlgebra(scalars,-1,-1)
+        super().__init__(Q, scalars, n, **kwargs)