]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 7c883d92fab3f3f2ee158737bdb0ec12bdf7effd..97a79789750197fafbb39e8e3fd9e1a7710e98d3 100644 (file)
 from sage.matrix.constructor import matrix
-from sage.structure.category_object import normalize_names
+from sage.misc.cachefunc import cached_method
 
-from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
-from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_algebra import EJA
+from mjo.eja.eja_element import (EJAElement,
+                                 CartesianProductParentEJAElement)
 
+class EJASubalgebraElement(EJAElement):
+    """
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import random_eja
+
+    TESTS::
+
+    The matrix representation of an element in the subalgebra is
+    the same as its matrix representation in the superalgebra::
+
+        sage: x = random_eja(field=QQ,orthonormalize=False).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize=False)
+        sage: y = A.random_element()
+        sage: actual = y.to_matrix()
+        sage: expected = y.superalgebra_element().to_matrix()
+        sage: actual == expected
+        True
+
+    The left-multiplication-by operator for elements in the subalgebra
+    works like it does in the superalgebra, even if we orthonormalize
+    our basis::
+
+        sage: x = random_eja(field=AA).random_element()           # long time
+        sage: A = x.subalgebra_generated_by(orthonormalize=True)  # long time
+        sage: y = A.random_element()                              # long time
+        sage: y.operator()(A.one()) == y                          # long time
+        True
 
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
     """
-    The subalgebra of an EJA generated by a single element.
+
+    def superalgebra_element(self):
+        """
+        Return the object in our algebra's superalgebra that corresponds
+        to myself.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+            ....:                                  random_eja)
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(3)
+            sage: x = sum(J.gens())
+            sage: x
+            b0 + b1 + b2 + b3 + b4 + b5
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A(x)
+            c1
+            sage: A(x).superalgebra_element()
+            b0 + b1 + b2 + b3 + b4 + b5
+            sage: y = sum(A.gens())
+            sage: y
+            c0 + c1
+            sage: B = y.subalgebra_generated_by(orthonormalize=False)
+            sage: B(y)
+            d1
+            sage: B(y).superalgebra_element()
+            c0 + c1
+
+        TESTS:
+
+        We can convert back and forth faithfully::
+
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A(x).superalgebra_element() == x
+            True
+            sage: y = A.random_element()
+            sage: A(y.superalgebra_element()) == y
+            True
+            sage: B = y.subalgebra_generated_by(orthonormalize=False)
+            sage: B(y).superalgebra_element() == y
+            True
+
+        """
+        return self.parent().superalgebra_embedding()(self)
+
+
+
+
+class EJASubalgebra(EJA):
+    """
+    A subalgebra of an EJA with a given basis.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import EJASubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = EJASubalgebra(J, (J(E11),), associative=True)
+        sage: K1.one().to_matrix()
+        [1 0]
+        [0 0]
+        sage: K2 = EJASubalgebra(J, (J(E22),), associative=True)
+        sage: K2.one().to_matrix()
+        [0 0]
+        [0 1]
+
+    TESTS:
+
+    Ensure that our generator names don't conflict with the
+    superalgebra::
+
+        sage: J = JordanSpinEJA(3)
+        sage: J.one().subalgebra_generated_by().gens()
+        (c0,)
+        sage: J = JordanSpinEJA(3, prefix='f')
+        sage: J.one().subalgebra_generated_by().gens()
+        (g0,)
+        sage: J = JordanSpinEJA(3, prefix='a')
+        sage: J.one().subalgebra_generated_by().gens()
+        (b0,)
+
+    Ensure that we can find subalgebras of subalgebras::
+
+        sage: A = ComplexHermitianEJA(3).one().subalgebra_generated_by()
+        sage: B = A.one().subalgebra_generated_by()
+        sage: B.dimension()
+        1
     """
-    @staticmethod
-    def __classcall_private__(cls, elt):
-        superalgebra = elt.parent()
-
-        # First compute the vector subspace spanned by the powers of
-        # the given element.
-        V = superalgebra.vector_space()
-        eja_basis = [superalgebra.one()]
-        basis_vectors = [superalgebra.one().vector()]
-        W = V.span_of_basis(basis_vectors)
-        for exponent in range(1, V.dimension()):
-            new_power = elt**exponent
-            basis_vectors.append( new_power.vector() )
-            try:
-                W = V.span_of_basis(basis_vectors)
-                eja_basis.append( new_power )
-            except ValueError:
-                # Vectors weren't independent; bail and keep the
-                # last subspace that worked.
-                break
-
-        # Make the basis hashable for UniqueRepresentation.
-        eja_basis = tuple(eja_basis)
-
-        # Now figure out the entries of the right-multiplication
-        # matrix for the successive basis elements b0, b1,... of
-        # that subspace.
-        F = superalgebra.base_ring()
-        mult_table = []
-        for b_right in eja_basis:
-                b_right_rows = []
-                # The first row of the right-multiplication matrix by
-                # b1 is what we get if we apply that matrix to b1. The
-                # second row of the right multiplication matrix by b1
-                # is what we get when we apply that matrix to b2...
-                #
-                # IMPORTANT: this assumes that all vectors are COLUMN
-                # vectors, unlike our superclass (which uses row vectors).
-                for b_left in eja_basis:
-                    # Multiply in the original EJA, but then get the
-                    # coordinates from the subalgebra in terms of its
-                    # basis.
-                    this_row = W.coordinates((b_left*b_right).vector())
-                    b_right_rows.append(this_row)
-                b_right_matrix = matrix(F, b_right_rows)
-                mult_table.append(b_right_matrix)
-
-        for m in mult_table:
-            m.set_immutable()
-        mult_table = tuple(mult_table)
-
-        # The rank is the highest possible degree of a minimal
-        # polynomial, and is bounded above by the dimension. We know
-        # in this case that there's an element whose minimal
-        # polynomial has the same degree as the space's dimension
-        # (remember how we constructed the space?), so that must be
-        # its rank too.
-        rank = W.dimension()
-
-        # EJAs are power-associative, and this algebra is nothin but
-        # powers.
-        assume_associative=True
-
-        # TODO: Un-hard-code this. It should be possible to get the "next"
-        # name based on the parent's generator names.
-        names = 'f'
-        names = normalize_names(W.dimension(), names)
-
-        cat = superalgebra.category().Associative()
-
-        # TODO: compute this and actually specify it.
-        natural_basis = None
-
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, cls)
-        return fdeja.__classcall__(cls,
-                                   F,
-                                   mult_table,
-                                   rank,
-                                   eja_basis,
-                                   W,
-                                   assume_associative=assume_associative,
-                                   names=names,
-                                   category=cat,
-                                   natural_basis=natural_basis)
-
-    def __init__(self,
-                 field,
-                 mult_table,
-                 rank,
-                 eja_basis,
-                 vector_space,
-                 assume_associative=True,
-                 names='f',
-                 category=None,
-                 natural_basis=None):
-
-        self._superalgebra = eja_basis[0].parent()
-        self._vector_space = vector_space
-        self._eja_basis = eja_basis
-
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
-        fdeja.__init__(field,
-                       mult_table,
-                       rank,
-                       assume_associative=assume_associative,
-                       names=names,
-                       category=category,
-                       natural_basis=natural_basis)
-
-
-    def vector_space(self):
+    def __init__(self, superalgebra, basis, **kwargs):
+        self._superalgebra = superalgebra
+        V = self._superalgebra.vector_space()
+        field = self._superalgebra.base_ring()
+
+        # A half-assed attempt to ensure that we don't collide with
+        # the superalgebra's prefix (ignoring the fact that there
+        # could be super-superelgrbas in scope). If possible, we
+        # try to "increment" the parent algebra's prefix, although
+        # this idea goes out the window fast because some prefixen
+        # are off-limits.
+        prefixen = ["b","c","d","e","f","g","h","l","m"]
+        try:
+            prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
+        except ValueError:
+            prefix = prefixen[0]
+
+        # The superalgebra constructor expects these to be in original matrix
+        # form, not algebra-element form.
+        matrix_basis = tuple( b.to_matrix() for b in basis )
+        def jordan_product(x,y):
+            return (self._superalgebra(x)*self._superalgebra(y)).to_matrix()
+
+        def inner_product(x,y):
+            return self._superalgebra(x).inner_product(self._superalgebra(y))
+
+        super().__init__(matrix_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         matrix_space=superalgebra.matrix_space(),
+                         prefix=prefix,
+                         **kwargs)
+
+
+
+    def _element_constructor_(self, elt):
         """
+        Construct an element of this subalgebra from the given one.
+        The only valid arguments are elements of the parent algebra
+        that happen to live in this subalgebra.
+
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import EJASubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
-            sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over Rational Field
-            User basis matrix:
-            [ 1  0  0  1  0  1]
-            [ 0  1  2  3  4  5]
-            [ 5 11 14 26 34 45]
-            sage: (x^0).vector()
-            (1, 0, 0, 1, 0, 1)
-            sage: (x^1).vector()
-            (0, 1, 2, 3, 4, 5)
-            sage: (x^2).vector()
-            (5, 11, 14, 26, 34, 45)
+            sage: X = matrix(AA, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = EJASubalgebra(J,
+            ....:                                    basis,
+            ....:                                    associative=True,
+            ....:                                    orthonormalize=False)
+            sage: K(J.one())
+            c1
+            sage: K(J.one() + x)
+            c0 + c1
+
+        ::
 
         """
-        return self._vector_space
+        if elt in self.superalgebra():
+            # If the subalgebra is trivial, its _matrix_span will be empty
+            # but we still want to be able convert the superalgebra's zero()
+            # element into the subalgebra's zero() element. There's no great
+            # workaround for this because sage checks that your basis is
+            # linearly-independent everywhere, so we can't just give it a
+            # basis consisting of the zero element.
+            m = elt.to_matrix()
+            if self.is_trivial() and m.is_zero():
+                return self.zero()
+            else:
+                return super()._element_constructor_(m)
+        else:
+            return super()._element_constructor_(elt)
+
 
+    def superalgebra(self):
+        """
+        Return the superalgebra that this algebra was generated from.
+        """
+        return self._superalgebra
 
-    class Element(FiniteDimensionalEuclideanJordanAlgebraElement):
-        def __init__(self, A, elt=None):
-            """
-            SETUP::
 
-                sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-                sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+    @cached_method
+    def superalgebra_embedding(self):
+        r"""
+        Return the embedding from this subalgebra into the superalgebra.
 
-            EXAMPLES::
+        SETUP::
 
-                sage: J = RealSymmetricEJA(3)
-                sage: x = sum( i*J.gens()[i] for i in range(6) )
-                sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x)
-                sage: [ K(x^k) for k in range(J.rank()) ]
-                [f0, f1, f2]
+            sage: from mjo.eja.eja_algebra import HadamardEJA
 
-            ::
+        EXAMPLES::
 
-            """
-            if elt in A._superalgebra:
-                    # Try to convert a parent algebra element into a
-                    # subalgebra element...
-                try:
-                    coords = A.vector_space().coordinates(elt.vector())
-                    elt = A(coords)
-                except AttributeError:
-                    # Catches a missing method in elt.vector()
-                    pass
+            sage: J = HadamardEJA(4)
+            sage: A = J.one().subalgebra_generated_by()
+            sage: iota = A.superalgebra_embedding()
+            sage: iota
+            Linear operator between finite-dimensional Euclidean Jordan algebras represented by the matrix:
+            [1/2]
+            [1/2]
+            [1/2]
+            [1/2]
+            Domain: Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 4 over Algebraic Real Field
+            sage: iota(A.one()) == J.one()
+            True
 
-            FiniteDimensionalEuclideanJordanAlgebraElement.__init__(self,
-                                                                    A,
-                                                                    elt)
+        """
+        from mjo.eja.eja_operator import EJAOperator
+        mm = self._module_morphism(lambda j: self.superalgebra()(self.monomial(j).to_matrix()),
+                                   codomain=self.superalgebra())
+        return EJAOperator(self,
+                                            self.superalgebra(),
+                                            mm.matrix())
+
+
+
+    Element = EJASubalgebraElement
+
+
+
+class CartesianProductEJASubalgebraElement(EJASubalgebraElement,
+                                           CartesianProductParentEJAElement):
+    r"""
+    The class for elements that both belong to a subalgebra and
+    have a Cartesian product algebra as their parent. By inheriting
+    :class:`CartesianProductParentEJAElement` in addition to
+    :class:`EJASubalgebraElement`, we allow the
+    ``to_matrix()`` method to be overridden with the version that
+    works on Cartesian products.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (HadamardEJA,
+        ....:                                  RealSymmetricEJA)
+
+    TESTS:
+
+    This used to fail when ``subalgebra_idempotent()`` tried to
+    embed the subalgebra element back into the original EJA::
+
+        sage: J1 = HadamardEJA(0, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.one().subalgebra_idempotent() == J.one()
+        True
+
+    """
+    pass
+
+class CartesianProductEJASubalgebra(EJASubalgebra):
+    r"""
+    Subalgebras whose parents are Cartesian products. Exists only
+    to specify a special element class that will (in addition)
+    inherit from ``CartesianProductParentEJAElement``.
+    """
+    Element = CartesianProductEJASubalgebraElement