]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 1b86d236c390691939fd84cabb597e6b6159d406..97a79789750197fafbb39e8e3fd9e1a7710e98d3 100644 (file)
@@ -1,9 +1,11 @@
 from sage.matrix.constructor import matrix
+from sage.misc.cachefunc import cached_method
 
-from mjo.eja.eja_algebra import FiniteDimensionalEJA
-from mjo.eja.eja_element import FiniteDimensionalEJAElement
+from mjo.eja.eja_algebra import EJA
+from mjo.eja.eja_element import (EJAElement,
+                                 CartesianProductParentEJAElement)
 
-class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement):
+class EJASubalgebraElement(EJAElement):
     """
     SETUP::
 
@@ -14,7 +16,6 @@ class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement):
     The matrix representation of an element in the subalgebra is
     the same as its matrix representation in the superalgebra::
 
-        sage: set_random_seed()
         sage: x = random_eja(field=QQ,orthonormalize=False).random_element()
         sage: A = x.subalgebra_generated_by(orthonormalize=False)
         sage: y = A.random_element()
@@ -27,11 +28,10 @@ class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement):
     works like it does in the superalgebra, even if we orthonormalize
     our basis::
 
-        sage: set_random_seed()
-        sage: x = random_eja(field=AA).random_element()
-        sage: A = x.subalgebra_generated_by(orthonormalize=True)
-        sage: y = A.random_element()
-        sage: y.operator()(A.one()) == y
+        sage: x = random_eja(field=AA).random_element()           # long time
+        sage: A = x.subalgebra_generated_by(orthonormalize=True)  # long time
+        sage: y = A.random_element()                              # long time
+        sage: y.operator()(A.one()) == y                          # long time
         True
 
     """
@@ -70,7 +70,6 @@ class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement):
 
         We can convert back and forth faithfully::
 
-            sage: set_random_seed()
             sage: J = random_eja(field=QQ, orthonormalize=False)
             sage: x = J.random_element()
             sage: A = x.subalgebra_generated_by(orthonormalize=False)
@@ -84,12 +83,12 @@ class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement):
             True
 
         """
-        return self.parent().superalgebra()(self.to_matrix())
+        return self.parent().superalgebra_embedding()(self)
 
 
 
 
-class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
+class EJASubalgebra(EJA):
     """
     A subalgebra of an EJA with a given basis.
 
@@ -98,7 +97,7 @@ class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
         ....:                                  JordanSpinEJA,
         ....:                                  RealSymmetricEJA)
-        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
+        sage: from mjo.eja.eja_subalgebra import EJASubalgebra
 
     EXAMPLES:
 
@@ -110,11 +109,11 @@ class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
         ....:                    [0,0] ])
         sage: E22 = matrix(AA, [ [0,0],
         ....:                    [0,1] ])
-        sage: K1 = FiniteDimensionalEJASubalgebra(J, (J(E11),), associative=True)
+        sage: K1 = EJASubalgebra(J, (J(E11),), associative=True)
         sage: K1.one().to_matrix()
         [1 0]
         [0 0]
-        sage: K2 = FiniteDimensionalEJASubalgebra(J, (J(E22),), associative=True)
+        sage: K2 = EJASubalgebra(J, (J(E22),), associative=True)
         sage: K2.one().to_matrix()
         [0 0]
         [0 1]
@@ -171,6 +170,7 @@ class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
                          jordan_product,
                          inner_product,
                          field=field,
+                         matrix_space=superalgebra.matrix_space(),
                          prefix=prefix,
                          **kwargs)
 
@@ -185,7 +185,7 @@ class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
+            sage: from mjo.eja.eja_subalgebra import EJASubalgebra
 
         EXAMPLES::
 
@@ -195,7 +195,7 @@ class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
             ....:                  [1,0,0] ])
             sage: x = J(X)
             sage: basis = ( x, x^2 ) # x^2 is the identity matrix
-            sage: K = FiniteDimensionalEJASubalgebra(J,
+            sage: K = EJASubalgebra(J,
             ....:                                    basis,
             ....:                                    associative=True,
             ....:                                    orthonormalize=False)
@@ -208,24 +208,21 @@ class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
 
         """
         if elt in self.superalgebra():
-            return super()._element_constructor_(elt.to_matrix())
+            # If the subalgebra is trivial, its _matrix_span will be empty
+            # but we still want to be able convert the superalgebra's zero()
+            # element into the subalgebra's zero() element. There's no great
+            # workaround for this because sage checks that your basis is
+            # linearly-independent everywhere, so we can't just give it a
+            # basis consisting of the zero element.
+            m = elt.to_matrix()
+            if self.is_trivial() and m.is_zero():
+                return self.zero()
+            else:
+                return super()._element_constructor_(m)
         else:
             return super()._element_constructor_(elt)
 
 
-
-    def matrix_space(self):
-        """
-        Return the matrix space of this algebra, which is identical to
-        that of its superalgebra.
-
-        This is correct "by definition," and avoids a mismatch when
-        the subalgebra is trivial (with no matrix basis elements to
-        infer anything from) and the parent is not.
-        """
-        return self.superalgebra().matrix_space()
-
-
     def superalgebra(self):
         """
         Return the superalgebra that this algebra was generated from.
@@ -233,4 +230,78 @@ class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
         return self._superalgebra
 
 
-    Element = FiniteDimensionalEJASubalgebraElement
+    @cached_method
+    def superalgebra_embedding(self):
+        r"""
+        Return the embedding from this subalgebra into the superalgebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import HadamardEJA
+
+        EXAMPLES::
+
+            sage: J = HadamardEJA(4)
+            sage: A = J.one().subalgebra_generated_by()
+            sage: iota = A.superalgebra_embedding()
+            sage: iota
+            Linear operator between finite-dimensional Euclidean Jordan algebras represented by the matrix:
+            [1/2]
+            [1/2]
+            [1/2]
+            [1/2]
+            Domain: Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 4 over Algebraic Real Field
+            sage: iota(A.one()) == J.one()
+            True
+
+        """
+        from mjo.eja.eja_operator import EJAOperator
+        mm = self._module_morphism(lambda j: self.superalgebra()(self.monomial(j).to_matrix()),
+                                   codomain=self.superalgebra())
+        return EJAOperator(self,
+                                            self.superalgebra(),
+                                            mm.matrix())
+
+
+
+    Element = EJASubalgebraElement
+
+
+
+class CartesianProductEJASubalgebraElement(EJASubalgebraElement,
+                                           CartesianProductParentEJAElement):
+    r"""
+    The class for elements that both belong to a subalgebra and
+    have a Cartesian product algebra as their parent. By inheriting
+    :class:`CartesianProductParentEJAElement` in addition to
+    :class:`EJASubalgebraElement`, we allow the
+    ``to_matrix()`` method to be overridden with the version that
+    works on Cartesian products.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (HadamardEJA,
+        ....:                                  RealSymmetricEJA)
+
+    TESTS:
+
+    This used to fail when ``subalgebra_idempotent()`` tried to
+    embed the subalgebra element back into the original EJA::
+
+        sage: J1 = HadamardEJA(0, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.one().subalgebra_idempotent() == J.one()
+        True
+
+    """
+    pass
+
+class CartesianProductEJASubalgebra(EJASubalgebra):
+    r"""
+    Subalgebras whose parents are Cartesian products. Exists only
+    to specify a special element class that will (in addition)
+    inherit from ``CartesianProductParentEJAElement``.
+    """
+    Element = CartesianProductEJASubalgebraElement