]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 110b049573bbc8d8aeaaab768e9cebceadbf3c7e..97a79789750197fafbb39e8e3fd9e1a7710e98d3 100644 (file)
@@ -1,9 +1,11 @@
 from sage.matrix.constructor import matrix
+from sage.misc.cachefunc import cached_method
 
-from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
-from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_algebra import EJA
+from mjo.eja.eja_element import (EJAElement,
+                                 CartesianProductParentEJAElement)
 
-class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+class EJASubalgebraElement(EJAElement):
     """
     SETUP::
 
@@ -11,14 +13,14 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
 
     TESTS::
 
-    The natural representation of an element in the subalgebra is
-    the same as its natural representation in the superalgebra::
+    The matrix representation of an element in the subalgebra is
+    the same as its matrix representation in the superalgebra::
 
-        sage: set_random_seed()
-        sage: A = random_eja().random_element().subalgebra_generated_by()
+        sage: x = random_eja(field=QQ,orthonormalize=False).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize=False)
         sage: y = A.random_element()
-        sage: actual = y.natural_representation()
-        sage: expected = y.superalgebra_element().natural_representation()
+        sage: actual = y.to_matrix()
+        sage: expected = y.superalgebra_element().to_matrix()
         sage: actual == expected
         True
 
@@ -26,11 +28,10 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
     works like it does in the superalgebra, even if we orthonormalize
     our basis::
 
-        sage: set_random_seed()
-        sage: x = random_eja(AA).random_element()
-        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-        sage: y = A.random_element()
-        sage: y.operator()(A.one()) == y
+        sage: x = random_eja(field=AA).random_element()           # long time
+        sage: A = x.subalgebra_generated_by(orthonormalize=True)  # long time
+        sage: y = A.random_element()                              # long time
+        sage: y.operator()(A.one()) == y                          # long time
         True
 
     """
@@ -50,56 +51,44 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
             sage: J = RealSymmetricEJA(3)
             sage: x = sum(J.gens())
             sage: x
-            e0 + e1 + e2 + e3 + e4 + e5
-            sage: A = x.subalgebra_generated_by()
+            b0 + b1 + b2 + b3 + b4 + b5
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: A(x)
-            f1
+            c1
             sage: A(x).superalgebra_element()
-            e0 + e1 + e2 + e3 + e4 + e5
+            b0 + b1 + b2 + b3 + b4 + b5
             sage: y = sum(A.gens())
             sage: y
-            f0 + f1
-            sage: B = y.subalgebra_generated_by()
+            c0 + c1
+            sage: B = y.subalgebra_generated_by(orthonormalize=False)
             sage: B(y)
-            g1
+            d1
             sage: B(y).superalgebra_element()
-            f0 + f1
+            c0 + c1
 
         TESTS:
 
         We can convert back and forth faithfully::
 
-            sage: set_random_seed()
-            sage: J = random_eja()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
             sage: x = J.random_element()
-            sage: A = x.subalgebra_generated_by()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: A(x).superalgebra_element() == x
             True
             sage: y = A.random_element()
             sage: A(y.superalgebra_element()) == y
             True
-            sage: B = y.subalgebra_generated_by()
+            sage: B = y.subalgebra_generated_by(orthonormalize=False)
             sage: B(y).superalgebra_element() == y
             True
 
         """
-        # As with the _element_constructor_() method on the
-        # algebra... even in a subspace of a subspace, the basis
-        # elements belong to the ambient space. As a result, only one
-        # level of coordinate_vector() is needed, regardless of how
-        # deeply we're nested.
-        W = self.parent().vector_space()
-        V = self.parent().superalgebra().vector_space()
-
-        # Multiply on the left because basis_matrix() is row-wise.
-        ambient_coords = self.to_vector()*W.basis_matrix()
-        V_coords = V.coordinate_vector(ambient_coords)
-        return self.parent().superalgebra().from_vector(V_coords)
+        return self.parent().superalgebra_embedding()(self)
 
 
 
 
-class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class EJASubalgebra(EJA):
     """
     A subalgebra of an EJA with a given basis.
 
@@ -108,7 +97,7 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
         ....:                                  JordanSpinEJA,
         ....:                                  RealSymmetricEJA)
-        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+        sage: from mjo.eja.eja_subalgebra import EJASubalgebra
 
     EXAMPLES:
 
@@ -120,28 +109,29 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         ....:                    [0,0] ])
         sage: E22 = matrix(AA, [ [0,0],
         ....:                    [0,1] ])
-        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
-        sage: K1.one().natural_representation()
+        sage: K1 = EJASubalgebra(J, (J(E11),), associative=True)
+        sage: K1.one().to_matrix()
         [1 0]
         [0 0]
-        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
-        sage: K2.one().natural_representation()
+        sage: K2 = EJASubalgebra(J, (J(E22),), associative=True)
+        sage: K2.one().to_matrix()
         [0 0]
         [0 1]
 
     TESTS:
 
-    Ensure that our generator names don't conflict with the superalgebra::
+    Ensure that our generator names don't conflict with the
+    superalgebra::
 
         sage: J = JordanSpinEJA(3)
         sage: J.one().subalgebra_generated_by().gens()
-        (f0,)
+        (c0,)
         sage: J = JordanSpinEJA(3, prefix='f')
         sage: J.one().subalgebra_generated_by().gens()
         (g0,)
-        sage: J = JordanSpinEJA(3, prefix='b')
+        sage: J = JordanSpinEJA(3, prefix='a')
         sage: J.one().subalgebra_generated_by().gens()
-        (c0,)
+        (b0,)
 
     Ensure that we can find subalgebras of subalgebras::
 
@@ -149,14 +139,11 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         sage: B = A.one().subalgebra_generated_by()
         sage: B.dimension()
         1
-
     """
-    def __init__(self, superalgebra, basis, category=None, check_axioms=True):
+    def __init__(self, superalgebra, basis, **kwargs):
         self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
-        if category is None:
-            category = self._superalgebra.category()
 
         # A half-assed attempt to ensure that we don't collide with
         # the superalgebra's prefix (ignoring the fact that there
@@ -164,42 +151,28 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         # try to "increment" the parent algebra's prefix, although
         # this idea goes out the window fast because some prefixen
         # are off-limits.
-        prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
+        prefixen = ["b","c","d","e","f","g","h","l","m"]
         try:
             prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
         except ValueError:
             prefix = prefixen[0]
 
-        # If our superalgebra is a subalgebra of something else, then
-        # these vectors won't have the right coordinates for
-        # V.span_of_basis() unless we use V.from_vector() on them.
-        W = V.span_of_basis( V.from_vector(b.to_vector()) for b in basis )
+        # The superalgebra constructor expects these to be in original matrix
+        # form, not algebra-element form.
+        matrix_basis = tuple( b.to_matrix() for b in basis )
+        def jordan_product(x,y):
+            return (self._superalgebra(x)*self._superalgebra(y)).to_matrix()
 
-        n = len(basis)
-        mult_table = [[W.zero() for i in range(n)] for j in range(n)]
-        for i in range(n):
-            for j in range(n):
-                product = basis[i]*basis[j]
-                # product.to_vector() might live in a vector subspace
-                # if our parent algebra is already a subalgebra. We
-                # use V.from_vector() to make it "the right size" in
-                # that case.
-                product_vector = V.from_vector(product.to_vector())
-                mult_table[i][j] = W.coordinate_vector(product_vector)
+        def inner_product(x,y):
+            return self._superalgebra(x).inner_product(self._superalgebra(y))
 
-        natural_basis = tuple( b.natural_representation() for b in basis )
-
-
-        self._vector_space = W
-
-        fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
-        fdeja.__init__(field,
-                       mult_table,
-                       prefix=prefix,
-                       category=category,
-                       natural_basis=natural_basis,
-                       check_field=False,
-                       check_axioms=check_axioms)
+        super().__init__(matrix_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         matrix_space=superalgebra.matrix_space(),
+                         prefix=prefix,
+                         **kwargs)
 
 
 
@@ -212,7 +185,7 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+            sage: from mjo.eja.eja_subalgebra import EJASubalgebra
 
         EXAMPLES::
 
@@ -222,45 +195,32 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
             ....:                  [1,0,0] ])
             sage: x = J(X)
             sage: basis = ( x, x^2 ) # x^2 is the identity matrix
-            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K = EJASubalgebra(J,
+            ....:                                    basis,
+            ....:                                    associative=True,
+            ....:                                    orthonormalize=False)
             sage: K(J.one())
-            f1
+            c1
             sage: K(J.one() + x)
-            f0 + f1
+            c0 + c1
 
         ::
 
         """
-        if elt not in self.superalgebra():
-            raise ValueError("not an element of this subalgebra")
-
-        # The extra hackery is because foo.to_vector() might not live
-        # in foo.parent().vector_space()! Subspaces of subspaces still
-        # have user bases in the ambient space, though, so only one
-        # level of coordinate_vector() is needed. In other words, if V
-        # is itself a subspace, the basis elements for W will be of
-        # the same length as the basis elements for V -- namely
-        # whatever the dimension of the ambient (parent of V?) space is.
-        V = self.superalgebra().vector_space()
-        W = self.vector_space()
-
-        # Multiply on the left because basis_matrix() is row-wise.
-        ambient_coords = elt.to_vector()*V.basis_matrix()
-        W_coords = W.coordinate_vector(ambient_coords)
-        return self.from_vector(W_coords)
-
-
-
-    def natural_basis_space(self):
-        """
-        Return the natural basis space of this algebra, which is identical
-        to that of its superalgebra.
-
-        This is correct "by definition," and avoids a mismatch when the
-        subalgebra is trivial (with no natural basis to infer anything
-        from) and the parent is not.
-        """
-        return self.superalgebra().natural_basis_space()
+        if elt in self.superalgebra():
+            # If the subalgebra is trivial, its _matrix_span will be empty
+            # but we still want to be able convert the superalgebra's zero()
+            # element into the subalgebra's zero() element. There's no great
+            # workaround for this because sage checks that your basis is
+            # linearly-independent everywhere, so we can't just give it a
+            # basis consisting of the zero element.
+            m = elt.to_matrix()
+            if self.is_trivial() and m.is_zero():
+                return self.zero()
+            else:
+                return super()._element_constructor_(m)
+        else:
+            return super()._element_constructor_(elt)
 
 
     def superalgebra(self):
@@ -270,38 +230,78 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         return self._superalgebra
 
 
-    def vector_space(self):
-        """
+    @cached_method
+    def superalgebra_embedding(self):
+        r"""
+        Return the embedding from this subalgebra into the superalgebra.
+
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+            sage: from mjo.eja.eja_algebra import HadamardEJA
 
         EXAMPLES::
 
-            sage: J = RealSymmetricEJA(3)
-            sage: E11 = matrix(ZZ, [ [1,0,0],
-            ....:                    [0,0,0],
-            ....:                    [0,0,0] ])
-            sage: E22 = matrix(ZZ, [ [0,0,0],
-            ....:                    [0,1,0],
-            ....:                    [0,0,0] ])
-            sage: b1 = J(E11)
-            sage: b2 = J(E22)
-            sage: basis = (b1, b2)
-            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
-            sage: K.vector_space()
-            Vector space of degree 6 and dimension 2 over...
-            User basis matrix:
-            [1 0 0 0 0 0]
-            [0 0 1 0 0 0]
-            sage: b1.to_vector()
-            (1, 0, 0, 0, 0, 0)
-            sage: b2.to_vector()
-            (0, 0, 1, 0, 0, 0)
+            sage: J = HadamardEJA(4)
+            sage: A = J.one().subalgebra_generated_by()
+            sage: iota = A.superalgebra_embedding()
+            sage: iota
+            Linear operator between finite-dimensional Euclidean Jordan algebras represented by the matrix:
+            [1/2]
+            [1/2]
+            [1/2]
+            [1/2]
+            Domain: Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 4 over Algebraic Real Field
+            sage: iota(A.one()) == J.one()
+            True
 
         """
-        return self._vector_space
+        from mjo.eja.eja_operator import EJAOperator
+        mm = self._module_morphism(lambda j: self.superalgebra()(self.monomial(j).to_matrix()),
+                                   codomain=self.superalgebra())
+        return EJAOperator(self,
+                                            self.superalgebra(),
+                                            mm.matrix())
+
+
+
+    Element = EJASubalgebraElement
 
 
-    Element = FiniteDimensionalEuclideanJordanSubalgebraElement
+
+class CartesianProductEJASubalgebraElement(EJASubalgebraElement,
+                                           CartesianProductParentEJAElement):
+    r"""
+    The class for elements that both belong to a subalgebra and
+    have a Cartesian product algebra as their parent. By inheriting
+    :class:`CartesianProductParentEJAElement` in addition to
+    :class:`EJASubalgebraElement`, we allow the
+    ``to_matrix()`` method to be overridden with the version that
+    works on Cartesian products.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (HadamardEJA,
+        ....:                                  RealSymmetricEJA)
+
+    TESTS:
+
+    This used to fail when ``subalgebra_idempotent()`` tried to
+    embed the subalgebra element back into the original EJA::
+
+        sage: J1 = HadamardEJA(0, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.one().subalgebra_idempotent() == J.one()
+        True
+
+    """
+    pass
+
+class CartesianProductEJASubalgebra(EJASubalgebra):
+    r"""
+    Subalgebras whose parents are Cartesian products. Exists only
+    to specify a special element class that will (in addition)
+    inherit from ``CartesianProductParentEJAElement``.
+    """
+    Element = CartesianProductEJASubalgebraElement