]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index 0f641416366ef7ee72d4703e070c69e2d60e30a9..97a79789750197fafbb39e8e3fd9e1a7710e98d3 100644 (file)
@@ -1,10 +1,11 @@
 from sage.matrix.constructor import matrix
+from sage.misc.cachefunc import cached_method
 
-from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
-from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_utils import gram_schmidt
+from mjo.eja.eja_algebra import EJA
+from mjo.eja.eja_element import (EJAElement,
+                                 CartesianProductParentEJAElement)
 
-class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+class EJASubalgebraElement(EJAElement):
     """
     SETUP::
 
@@ -12,14 +13,14 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
 
     TESTS::
 
-    The natural representation of an element in the subalgebra is
-    the same as its natural representation in the superalgebra::
+    The matrix representation of an element in the subalgebra is
+    the same as its matrix representation in the superalgebra::
 
-        sage: set_random_seed()
-        sage: A = random_eja().random_element().subalgebra_generated_by()
+        sage: x = random_eja(field=QQ,orthonormalize=False).random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize=False)
         sage: y = A.random_element()
-        sage: actual = y.natural_representation()
-        sage: expected = y.superalgebra_element().natural_representation()
+        sage: actual = y.to_matrix()
+        sage: expected = y.superalgebra_element().to_matrix()
         sage: actual == expected
         True
 
@@ -27,11 +28,10 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
     works like it does in the superalgebra, even if we orthonormalize
     our basis::
 
-        sage: set_random_seed()
-        sage: x = random_eja(AA).random_element()
-        sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-        sage: y = A.random_element()
-        sage: y.operator()(A.one()) == y
+        sage: x = random_eja(field=AA).random_element()           # long time
+        sage: A = x.subalgebra_generated_by(orthonormalize=True)  # long time
+        sage: y = A.random_element()                              # long time
+        sage: y.operator()(A.one()) == y                          # long time
         True
 
     """
@@ -51,56 +51,87 @@ class FiniteDimensionalEuclideanJordanElementSubalgebraElement(FiniteDimensional
             sage: J = RealSymmetricEJA(3)
             sage: x = sum(J.gens())
             sage: x
-            e0 + e1 + e2 + e3 + e4 + e5
-            sage: A = x.subalgebra_generated_by()
+            b0 + b1 + b2 + b3 + b4 + b5
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: A(x)
-            f1
+            c1
             sage: A(x).superalgebra_element()
-            e0 + e1 + e2 + e3 + e4 + e5
+            b0 + b1 + b2 + b3 + b4 + b5
+            sage: y = sum(A.gens())
+            sage: y
+            c0 + c1
+            sage: B = y.subalgebra_generated_by(orthonormalize=False)
+            sage: B(y)
+            d1
+            sage: B(y).superalgebra_element()
+            c0 + c1
 
         TESTS:
 
         We can convert back and forth faithfully::
 
-            sage: set_random_seed()
-            sage: J = random_eja()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
             sage: x = J.random_element()
-            sage: A = x.subalgebra_generated_by()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: A(x).superalgebra_element() == x
             True
             sage: y = A.random_element()
             sage: A(y.superalgebra_element()) == y
             True
+            sage: B = y.subalgebra_generated_by(orthonormalize=False)
+            sage: B(y).superalgebra_element() == y
+            True
 
         """
-        return self.parent().superalgebra().linear_combination(
-          zip(self.parent()._superalgebra_basis, self.to_vector()) )
+        return self.parent().superalgebra_embedding()(self)
 
 
 
 
-class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class EJASubalgebra(EJA):
     """
-    The subalgebra of an EJA generated by a single element.
+    A subalgebra of an EJA with a given basis.
 
     SETUP::
 
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-        ....:                                  JordanSpinEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+        sage: from mjo.eja.eja_subalgebra import EJASubalgebra
+
+    EXAMPLES:
+
+    The following Peirce subalgebras of the 2-by-2 real symmetric
+    matrices do not contain the superalgebra's identity element::
+
+        sage: J = RealSymmetricEJA(2)
+        sage: E11 = matrix(AA, [ [1,0],
+        ....:                    [0,0] ])
+        sage: E22 = matrix(AA, [ [0,0],
+        ....:                    [0,1] ])
+        sage: K1 = EJASubalgebra(J, (J(E11),), associative=True)
+        sage: K1.one().to_matrix()
+        [1 0]
+        [0 0]
+        sage: K2 = EJASubalgebra(J, (J(E22),), associative=True)
+        sage: K2.one().to_matrix()
+        [0 0]
+        [0 1]
 
     TESTS:
 
-    Ensure that our generator names don't conflict with the superalgebra::
+    Ensure that our generator names don't conflict with the
+    superalgebra::
 
         sage: J = JordanSpinEJA(3)
         sage: J.one().subalgebra_generated_by().gens()
-        (f0,)
+        (c0,)
         sage: J = JordanSpinEJA(3, prefix='f')
         sage: J.one().subalgebra_generated_by().gens()
         (g0,)
-        sage: J = JordanSpinEJA(3, prefix='b')
+        sage: J = JordanSpinEJA(3, prefix='a')
         sage: J.one().subalgebra_generated_by().gens()
-        (c0,)
+        (b0,)
 
     Ensure that we can find subalgebras of subalgebras::
 
@@ -108,11 +139,9 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         sage: B = A.one().subalgebra_generated_by()
         sage: B.dimension()
         1
-
     """
-    def __init__(self, elt, orthonormalize_basis):
-        self._superalgebra = elt.parent()
-        category = self._superalgebra.category().Associative()
+    def __init__(self, superalgebra, basis, **kwargs):
+        self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
 
@@ -122,101 +151,29 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         # try to "increment" the parent algebra's prefix, although
         # this idea goes out the window fast because some prefixen
         # are off-limits.
-        prefixen = [ 'f', 'g', 'h', 'a', 'b', 'c', 'd' ]
+        prefixen = ["b","c","d","e","f","g","h","l","m"]
         try:
             prefix = prefixen[prefixen.index(self._superalgebra.prefix()) + 1]
         except ValueError:
             prefix = prefixen[0]
 
-        # This list is guaranteed to contain all independent powers,
-        # because it's the maximal set of powers that could possibly
-        # be independent (by a dimension argument).
-        powers = [ elt**k for k in range(V.dimension()) ]
-
-        if orthonormalize_basis == False:
-            # In this case, we just need to figure out which elements
-            # of the "powers" list are redundant... First compute the
-            # vector subspace spanned by the powers of the given
-            # element.
-            power_vectors = [ p.to_vector() for p in powers ]
+        # The superalgebra constructor expects these to be in original matrix
+        # form, not algebra-element form.
+        matrix_basis = tuple( b.to_matrix() for b in basis )
+        def jordan_product(x,y):
+            return (self._superalgebra(x)*self._superalgebra(y)).to_matrix()
 
-            # Figure out which powers form a linearly-independent set.
-            ind_rows = matrix(field, power_vectors).pivot_rows()
+        def inner_product(x,y):
+            return self._superalgebra(x).inner_product(self._superalgebra(y))
 
-            # Pick those out of the list of all powers.
-            superalgebra_basis = tuple(map(powers.__getitem__, ind_rows))
-
-            # If our superalgebra is a subalgebra of something else, then
-            # these vectors won't have the right coordinates for
-            # V.span_of_basis() unless we use V.from_vector() on them.
-            basis_vectors = map(power_vectors.__getitem__, ind_rows)
-        else:
-            # If we're going to orthonormalize the basis anyway, we
-            # might as well just do Gram-Schmidt on the whole list of
-            # powers. The redundant ones will get zero'd out.
-            superalgebra_basis = gram_schmidt(powers)
-            basis_vectors = [ b.to_vector() for b in superalgebra_basis ]
-
-        W = V.span_of_basis( V.from_vector(v) for v in basis_vectors )
-        n = len(superalgebra_basis)
-        mult_table = [[W.zero() for i in range(n)] for j in range(n)]
-        for i in range(n):
-            for j in range(n):
-                product = superalgebra_basis[i]*superalgebra_basis[j]
-                # product.to_vector() might live in a vector subspace
-                # if our parent algebra is already a subalgebra. We
-                # use V.from_vector() to make it "the right size" in
-                # that case.
-                product_vector = V.from_vector(product.to_vector())
-                mult_table[i][j] = W.coordinate_vector(product_vector)
-
-        # The rank is the highest possible degree of a minimal
-        # polynomial, and is bounded above by the dimension. We know
-        # in this case that there's an element whose minimal
-        # polynomial has the same degree as the space's dimension
-        # (remember how we constructed the space?), so that must be
-        # its rank too.
-        rank = W.dimension()
-
-        natural_basis = tuple( b.natural_representation()
-                               for b in superalgebra_basis )
-
-
-        self._vector_space = W
-        self._superalgebra_basis = superalgebra_basis
-
-
-        fdeja = super(FiniteDimensionalEuclideanJordanElementSubalgebra, self)
-        return fdeja.__init__(field,
-                              mult_table,
-                              rank,
-                              prefix=prefix,
-                              category=category,
-                              natural_basis=natural_basis)
-
-
-    def _a_regular_element(self):
-        """
-        Override the superalgebra method to return the one
-        regular element that is sure to exist in this
-        subalgebra, namely the element that generated it.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import random_eja
-
-        TESTS::
-
-            sage: set_random_seed()
-            sage: J = random_eja().random_element().subalgebra_generated_by()
-            sage: J._a_regular_element().is_regular()
-            True
+        super().__init__(matrix_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         matrix_space=superalgebra.matrix_space(),
+                         prefix=prefix,
+                         **kwargs)
 
-        """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            return self.monomial(1)
 
 
     def _element_constructor_(self, elt):
@@ -228,156 +185,123 @@ class FiniteDimensionalEuclideanJordanElementSubalgebra(FiniteDimensionalEuclide
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+            sage: from mjo.eja.eja_subalgebra import EJASubalgebra
 
         EXAMPLES::
 
             sage: J = RealSymmetricEJA(3)
-            sage: x = sum( i*J.gens()[i] for i in range(6) )
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
-            sage: [ K(x^k) for k in range(J.rank()) ]
-            [f0, f1, f2]
+            sage: X = matrix(AA, [ [0,0,1],
+            ....:                  [0,1,0],
+            ....:                  [1,0,0] ])
+            sage: x = J(X)
+            sage: basis = ( x, x^2 ) # x^2 is the identity matrix
+            sage: K = EJASubalgebra(J,
+            ....:                                    basis,
+            ....:                                    associative=True,
+            ....:                                    orthonormalize=False)
+            sage: K(J.one())
+            c1
+            sage: K(J.one() + x)
+            c0 + c1
 
         ::
 
         """
-        if elt == 0:
-            # Just as in the superalgebra class, we need to hack
-            # this special case to ensure that random_element() can
-            # coerce a ring zero into the algebra.
-            return self.zero()
-
         if elt in self.superalgebra():
-            coords = self.vector_space().coordinate_vector(elt.to_vector())
-            return self.from_vector(coords)
-
+            # If the subalgebra is trivial, its _matrix_span will be empty
+            # but we still want to be able convert the superalgebra's zero()
+            # element into the subalgebra's zero() element. There's no great
+            # workaround for this because sage checks that your basis is
+            # linearly-independent everywhere, so we can't just give it a
+            # basis consisting of the zero element.
+            m = elt.to_matrix()
+            if self.is_trivial() and m.is_zero():
+                return self.zero()
+            else:
+                return super()._element_constructor_(m)
+        else:
+            return super()._element_constructor_(elt)
 
 
-    def one(self):
+    def superalgebra(self):
+        """
+        Return the superalgebra that this algebra was generated from.
         """
-        Return the multiplicative identity element of this algebra.
+        return self._superalgebra
+
 
-        The superclass method computes the identity element, which is
-        beyond overkill in this case: the superalgebra identity
-        restricted to this algebra is its identity. Note that we can't
-        count on the first basis element being the identity -- it migth
-        have been scaled if we orthonormalized the basis.
+    @cached_method
+    def superalgebra_embedding(self):
+        r"""
+        Return the embedding from this subalgebra into the superalgebra.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (RealCartesianProductEJA,
-            ....:                                  random_eja)
+            sage: from mjo.eja.eja_algebra import HadamardEJA
 
         EXAMPLES::
 
-            sage: J = RealCartesianProductEJA(5)
-            sage: J.one()
-            e0 + e1 + e2 + e3 + e4
-            sage: x = sum(J.gens())
-            sage: A = x.subalgebra_generated_by()
-            sage: A.one()
-            f0
-            sage: A.one().superalgebra_element()
-            e0 + e1 + e2 + e3 + e4
-
-        TESTS:
-
-        The identity element acts like the identity over the rationals::
-
-            sage: set_random_seed()
-            sage: x = random_eja().random_element()
-            sage: A = x.subalgebra_generated_by()
-            sage: x = A.random_element()
-            sage: A.one()*x == x and x*A.one() == x
-            True
-
-        The identity element acts like the identity over the algebraic
-        reals with an orthonormal basis::
-
-            sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
-            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-            sage: x = A.random_element()
-            sage: A.one()*x == x and x*A.one() == x
-            True
-
-        The matrix of the unit element's operator is the identity over
-        the rationals::
-
-            sage: set_random_seed()
-            sage: x = random_eja().random_element()
-            sage: A = x.subalgebra_generated_by()
-            sage: actual = A.one().operator().matrix()
-            sage: expected = matrix.identity(A.base_ring(), A.dimension())
-            sage: actual == expected
-            True
-
-        The matrix of the unit element's operator is the identity over
-        the algebraic reals with an orthonormal basis::
-
-            sage: set_random_seed()
-            sage: x = random_eja(AA).random_element()
-            sage: A = x.subalgebra_generated_by(orthonormalize_basis=True)
-            sage: actual = A.one().operator().matrix()
-            sage: expected = matrix.identity(A.base_ring(), A.dimension())
-            sage: actual == expected
+            sage: J = HadamardEJA(4)
+            sage: A = J.one().subalgebra_generated_by()
+            sage: iota = A.superalgebra_embedding()
+            sage: iota
+            Linear operator between finite-dimensional Euclidean Jordan algebras represented by the matrix:
+            [1/2]
+            [1/2]
+            [1/2]
+            [1/2]
+            Domain: Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 4 over Algebraic Real Field
+            sage: iota(A.one()) == J.one()
             True
 
         """
-        if self.dimension() == 0:
-            return self.zero()
-        else:
-            sa_one = self.superalgebra().one().to_vector()
-            sa_coords = self.vector_space().coordinate_vector(sa_one)
-            return self.from_vector(sa_coords)
+        from mjo.eja.eja_operator import EJAOperator
+        mm = self._module_morphism(lambda j: self.superalgebra()(self.monomial(j).to_matrix()),
+                                   codomain=self.superalgebra())
+        return EJAOperator(self,
+                                            self.superalgebra(),
+                                            mm.matrix())
 
 
-    def natural_basis_space(self):
-        """
-        Return the natural basis space of this algebra, which is identical
-        to that of its superalgebra.
 
-        This is correct "by definition," and avoids a mismatch when the
-        subalgebra is trivial (with no natural basis to infer anything
-        from) and the parent is not.
-        """
-        return self.superalgebra().natural_basis_space()
+    Element = EJASubalgebraElement
 
 
-    def superalgebra(self):
-        """
-        Return the superalgebra that this algebra was generated from.
-        """
-        return self._superalgebra
 
+class CartesianProductEJASubalgebraElement(EJASubalgebraElement,
+                                           CartesianProductParentEJAElement):
+    r"""
+    The class for elements that both belong to a subalgebra and
+    have a Cartesian product algebra as their parent. By inheriting
+    :class:`CartesianProductParentEJAElement` in addition to
+    :class:`EJASubalgebraElement`, we allow the
+    ``to_matrix()`` method to be overridden with the version that
+    works on Cartesian products.
 
-    def vector_space(self):
-        """
-        SETUP::
+    SETUP::
 
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanElementSubalgebra
+        sage: from mjo.eja.eja_algebra import (HadamardEJA,
+        ....:                                  RealSymmetricEJA)
 
-        EXAMPLES::
+    TESTS:
 
-            sage: J = RealSymmetricEJA(3)
-            sage: x = J.monomial(0) + 2*J.monomial(2) + 5*J.monomial(5)
-            sage: K = FiniteDimensionalEuclideanJordanElementSubalgebra(x,False)
-            sage: K.vector_space()
-            Vector space of degree 6 and dimension 3 over...
-            User basis matrix:
-            [ 1  0  1  0  0  1]
-            [ 1  0  2  0  0  5]
-            [ 1  0  4  0  0 25]
-            sage: (x^0).to_vector()
-            (1, 0, 1, 0, 0, 1)
-            sage: (x^1).to_vector()
-            (1, 0, 2, 0, 0, 5)
-            sage: (x^2).to_vector()
-            (1, 0, 4, 0, 0, 25)
+    This used to fail when ``subalgebra_idempotent()`` tried to
+    embed the subalgebra element back into the original EJA::
 
-        """
-        return self._vector_space
+        sage: J1 = HadamardEJA(0, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.one().subalgebra_idempotent() == J.one()
+        True
 
+    """
+    pass
 
-    Element = FiniteDimensionalEuclideanJordanElementSubalgebraElement
+class CartesianProductEJASubalgebra(EJASubalgebra):
+    r"""
+    Subalgebras whose parents are Cartesian products. Exists only
+    to specify a special element class that will (in addition)
+    inherit from ``CartesianProductParentEJAElement``.
+    """
+    Element = CartesianProductEJASubalgebraElement