]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_subalgebra.py
eja: begin major overhaul of class hierarchy and naming.
[sage.d.git] / mjo / eja / eja_subalgebra.py
index e7308ea34b9a36aef09a84069a1289e072487ec7..3eee24866216ca84aa8acf2484e07d01d6cad019 100644 (file)
@@ -1,9 +1,9 @@
 from sage.matrix.constructor import matrix
 
-from mjo.eja.eja_algebra import FiniteDimensionalEuclideanJordanAlgebra
-from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
+from mjo.eja.eja_algebra import FiniteDimensionalEJA
+from mjo.eja.eja_element import FiniteDimensionalEJAElement
 
-class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclideanJordanAlgebraElement):
+class FiniteDimensionalEJASubalgebraElement(FiniteDimensionalEJAElement):
     """
     SETUP::
 
@@ -83,23 +83,12 @@ class FiniteDimensionalEuclideanJordanSubalgebraElement(FiniteDimensionalEuclide
             True
 
         """
-        # As with the _element_constructor_() method on the
-        # algebra... even in a subspace of a subspace, the basis
-        # elements belong to the ambient space. As a result, only one
-        # level of coordinate_vector() is needed, regardless of how
-        # deeply we're nested.
-        W = self.parent().vector_space()
-        V = self.parent().superalgebra().vector_space()
+        return self._superalgebra(self.to_matrix())
 
-        # Multiply on the left because basis_matrix() is row-wise.
-        ambient_coords = self.to_vector()*W.basis_matrix()
-        V_coords = V.coordinate_vector(ambient_coords)
-        return self.parent().superalgebra().from_vector(V_coords)
 
 
 
-
-class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJordanAlgebra):
+class FiniteDimensionalEJASubalgebra(FiniteDimensionalEJA):
     """
     A subalgebra of an EJA with a given basis.
 
@@ -108,7 +97,7 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
         ....:                                  JordanSpinEJA,
         ....:                                  RealSymmetricEJA)
-        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+        sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
 
     EXAMPLES:
 
@@ -120,11 +109,11 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         ....:                    [0,0] ])
         sage: E22 = matrix(AA, [ [0,0],
         ....:                    [0,1] ])
-        sage: K1 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E11),))
+        sage: K1 = FiniteDimensionalEJASubalgebra(J, (J(E11),))
         sage: K1.one().to_matrix()
         [1 0]
         [0 0]
-        sage: K2 = FiniteDimensionalEuclideanJordanSubalgebra(J, (J(E22),))
+        sage: K2 = FiniteDimensionalEJASubalgebra(J, (J(E22),))
         sage: K2.one().to_matrix()
         [0 0]
         [0 1]
@@ -151,12 +140,10 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         1
 
     """
-    def __init__(self, superalgebra, basis, category=None, check_axioms=True):
+    def __init__(self, superalgebra, basis, **kwargs):
         self._superalgebra = superalgebra
         V = self._superalgebra.vector_space()
         field = self._superalgebra.base_ring()
-        if category is None:
-            category = self._superalgebra.category()
 
         # A half-assed attempt to ensure that we don't collide with
         # the superalgebra's prefix (ignoring the fact that there
@@ -170,52 +157,20 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         except ValueError:
             prefix = prefixen[0]
 
-        # If our superalgebra is a subalgebra of something else, then
-        # these vectors won't have the right coordinates for
-        # V.span_of_basis() unless we use V.from_vector() on them.
-        W = V.span_of_basis( (V.from_vector(b.to_vector()) for b in basis),
-                             check=check_axioms)
-
-        n = len(basis)
-        if check_axioms:
-            # The tables are square if we're verifying that they
-            # are commutative.
-            mult_table = [[W.zero() for j in range(n)] for i in range(n)]
-            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
-                           for j in range(n) ]
-                         for i in range(n) ]
-        else:
-            mult_table = [[W.zero() for j in range(i+1)] for i in range(n)]
-            ip_table = [ [ self._superalgebra.inner_product(basis[i],basis[j])
-                           for j in range(i+1) ]
-                         for i in range(n) ]
-
-        for i in range(n):
-            for j in range(i+1):
-                product = basis[i]*basis[j]
-                # product.to_vector() might live in a vector subspace
-                # if our parent algebra is already a subalgebra. We
-                # use V.from_vector() to make it "the right size" in
-                # that case.
-                product_vector = V.from_vector(product.to_vector())
-                mult_table[i][j] = W.coordinate_vector(product_vector)
-                if check_axioms:
-                    mult_table[j][i] = mult_table[i][j]
-
+        # The superalgebra constructor expects these to be in original matrix
+        # form, not algebra-element form.
         matrix_basis = tuple( b.to_matrix() for b in basis )
+        def jordan_product(x,y):
+            return (self._superalgebra(x)*self._superalgebra(y)).to_matrix()
 
+        def inner_product(x,y):
+            return self._superalgebra(x).inner_product(self._superalgebra(y))
 
-        self._vector_space = W
-
-        fdeja = super(FiniteDimensionalEuclideanJordanSubalgebra, self)
-        fdeja.__init__(field,
-                       mult_table,
-                       ip_table,
-                       prefix=prefix,
-                       category=category,
-                       matrix_basis=matrix_basis,
-                       check_field=False,
-                       check_axioms=check_axioms)
+        super().__init__(matrix_basis,
+                         jordan_product,
+                         inner_product,
+                         prefix=prefix,
+                         **kwargs)
 
 
 
@@ -228,7 +183,7 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         SETUP::
 
             sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
+            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
 
         EXAMPLES::
 
@@ -238,7 +193,7 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
             ....:                  [1,0,0] ])
             sage: x = J(X)
             sage: basis = ( x, x^2 ) # x^2 is the identity matrix
-            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J, basis)
+            sage: K = FiniteDimensionalEJASubalgebra(J, basis, orthonormalize=False)
             sage: K(J.one())
             f1
             sage: K(J.one() + x)
@@ -247,23 +202,10 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         ::
 
         """
-        if elt not in self.superalgebra():
-            raise ValueError("not an element of this subalgebra")
-
-        # The extra hackery is because foo.to_vector() might not live
-        # in foo.parent().vector_space()! Subspaces of subspaces still
-        # have user bases in the ambient space, though, so only one
-        # level of coordinate_vector() is needed. In other words, if V
-        # is itself a subspace, the basis elements for W will be of
-        # the same length as the basis elements for V -- namely
-        # whatever the dimension of the ambient (parent of V?) space is.
-        V = self.superalgebra().vector_space()
-        W = self.vector_space()
-
-        # Multiply on the left because basis_matrix() is row-wise.
-        ambient_coords = elt.to_vector()*V.basis_matrix()
-        W_coords = W.coordinate_vector(ambient_coords)
-        return self.from_vector(W_coords)
+        if elt in self.superalgebra():
+            return super()._element_constructor_(elt.to_matrix())
+        else:
+            return super()._element_constructor_(elt)
 
 
 
@@ -286,38 +228,4 @@ class FiniteDimensionalEuclideanJordanSubalgebra(FiniteDimensionalEuclideanJorda
         return self._superalgebra
 
 
-    def vector_space(self):
-        """
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-            sage: from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
-
-        EXAMPLES::
-
-            sage: J = RealSymmetricEJA(3)
-            sage: E11 = matrix(ZZ, [ [1,0,0],
-            ....:                    [0,0,0],
-            ....:                    [0,0,0] ])
-            sage: E22 = matrix(ZZ, [ [0,0,0],
-            ....:                    [0,1,0],
-            ....:                    [0,0,0] ])
-            sage: b1 = J(E11)
-            sage: b2 = J(E22)
-            sage: basis = (b1, b2)
-            sage: K = FiniteDimensionalEuclideanJordanSubalgebra(J,basis)
-            sage: K.vector_space()
-            Vector space of degree 6 and dimension 2 over...
-            User basis matrix:
-            [1 0 0 0 0 0]
-            [0 0 1 0 0 0]
-            sage: b1.to_vector()
-            (1, 0, 0, 0, 0, 0)
-            sage: b2.to_vector()
-            (0, 0, 1, 0, 0, 0)
-
-        """
-        return self._vector_space
-
-
-    Element = FiniteDimensionalEuclideanJordanSubalgebraElement
+    Element = FiniteDimensionalEJASubalgebraElement