]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_element.py
eja: factor out MatrixEJA initialization.
[sage.d.git] / mjo / eja / eja_element.py
index 6181f032e644423989cf135cd65eeafcb943585f..c98d9a2b64651562928a6489ef88e03fdd2b0dc9 100644 (file)
@@ -1,9 +1,10 @@
 from sage.matrix.constructor import matrix
+from sage.misc.cachefunc import cached_method
 from sage.modules.free_module import VectorSpace
 from sage.modules.with_basis.indexed_element import IndexedFreeModuleElement
 
 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
-from mjo.eja.eja_utils import _mat2vec
+from mjo.eja.eja_utils import _mat2vec, _scale
 
 class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
     """
@@ -166,8 +167,8 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: J = HadamardEJA(3)
             sage: p1 = J.one().characteristic_polynomial()
             sage: q1 = J.zero().characteristic_polynomial()
-            sage: e0,e1,e2 = J.gens()
-            sage: A = (e0 + 2*e1 + 3*e2).subalgebra_generated_by() # dim 3
+            sage: b0,b1,b2 = J.gens()
+            sage: A = (b0 + 2*b1 + 3*b2).subalgebra_generated_by() # dim 3
             sage: p2 = A.one().characteristic_polynomial()
             sage: q2 = A.zero().characteristic_polynomial()
             sage: p1 == p2
@@ -347,7 +348,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         EXAMPLES::
 
             sage: J = JordanSpinEJA(2)
-            sage: e0,e1 = J.gens()
             sage: x = sum( J.gens() )
             sage: x.det()
             0
@@ -355,7 +355,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         ::
 
             sage: J = JordanSpinEJA(3)
-            sage: e0,e1,e2 = J.gens()
             sage: x = sum( J.gens() )
             sage: x.det()
             -1
@@ -390,7 +389,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: (x*y).det() == x.det()*y.det()
             True
 
-        The determinant in matrix algebras is just the usual determinant::
+        The determinant in real matrix algebras is the usual determinant::
 
             sage: set_random_seed()
             sage: X = matrix.random(QQ,3)
@@ -405,21 +404,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: actual2 == expected
             True
 
-        ::
-
-            sage: set_random_seed()
-            sage: J1 = ComplexHermitianEJA(2)
-            sage: J2 = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
-            sage: X = matrix.random(GaussianIntegers(), 2)
-            sage: X = X + X.H
-            sage: expected = AA(X.det())
-            sage: actual1 = J1(J1.real_embed(X)).det()
-            sage: actual2 = J2(J2.real_embed(X)).det()
-            sage: expected == actual1
-            True
-            sage: expected == actual2
-            True
-
         """
         P = self.parent()
         r = P.rank()
@@ -438,6 +422,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         return ((-1)**r)*p(*self.to_vector())
 
 
+    @cached_method
     def inverse(self):
         """
         Return the Jordan-multiplicative inverse of this element.
@@ -482,7 +467,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: JordanSpinEJA(3).zero().inverse()
             Traceback (most recent call last):
             ...
-            ValueError: element is not invertible
+            ZeroDivisionError: element is not invertible
 
         TESTS:
 
@@ -534,40 +519,38 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: slow == fast                                   # long time
             True
         """
-        if not self.is_invertible():
-            raise ValueError("element is not invertible")
-
+        not_invertible_msg = "element is not invertible"
         if self.parent()._charpoly_coefficients.is_in_cache():
             # We can invert using our charpoly if it will be fast to
             # compute. If the coefficients are cached, our rank had
             # better be too!
+            if self.det().is_zero():
+                raise ZeroDivisionError(not_invertible_msg)
             r = self.parent().rank()
             a = self.characteristic_polynomial().coefficients(sparse=False)
             return (-1)**(r+1)*sum(a[i+1]*self**i for i in range(r))/self.det()
 
-        return (~self.quadratic_representation())(self)
+        try:
+            inv = (~self.quadratic_representation())(self)
+            self.is_invertible.set_cache(True)
+            return inv
+        except ZeroDivisionError:
+            self.is_invertible.set_cache(False)
+            raise ZeroDivisionError(not_invertible_msg)
 
 
+    @cached_method
     def is_invertible(self):
         """
         Return whether or not this element is invertible.
 
         ALGORITHM:
 
-        The usual way to do this is to check if the determinant is
-        zero, but we need the characteristic polynomial for the
-        determinant. The minimal polynomial is a lot easier to get,
-        so we use Corollary 2 in Chapter V of Koecher to check
-        whether or not the parent algebra's zero element is a root
-        of this element's minimal polynomial.
-
-        That is... unless the coefficients of our algebra's
-        "characteristic polynomial of" function are already cached!
-        In that case, we just use the determinant (which will be fast
-        as a result).
-
-        Beware that we can't use the superclass method, because it
-        relies on the algebra being associative.
+        If computing my determinant will be fast, we do so and compare
+        with zero (Proposition II.2.4 in Faraut and
+        Koranyi). Otherwise, Proposition II.3.2 in Faraut and Koranyi
+        reduces the problem to the invertibility of my quadratic
+        representation.
 
         SETUP::
 
@@ -600,7 +583,6 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: fast = x.is_invertible()                       # long time
             sage: slow == fast                                   # long time
             True
-
         """
         if self.is_zero():
             if self.parent().is_trivial():
@@ -609,15 +591,17 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
                 return False
 
         if self.parent()._charpoly_coefficients.is_in_cache():
-            # The determinant will be quicker than computing the minimal
-            # polynomial from scratch, most likely.
+            # The determinant will be quicker than inverting the
+            # quadratic representation, most likely.
             return (not self.det().is_zero())
 
-        # In fact, we only need to know if the constant term is non-zero,
-        # so we can pass in the field's zero element instead.
-        zero = self.base_ring().zero()
-        p = self.minimal_polynomial()
-        return not (p(zero) == zero)
+        # The easiest way to determine if I'm invertible is to try.
+        try:
+            inv = (~self.quadratic_representation())(self)
+            self.inverse.set_cache(inv)
+            return True
+        except ZeroDivisionError:
+            return False
 
 
     def is_primitive_idempotent(self):
@@ -663,7 +647,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         element should always be in terms of minimal idempotents::
 
             sage: J = JordanSpinEJA(4)
-            sage: x = sum( i*J.gens()[i] for i in range(len(J.gens())) )
+            sage: x = sum( i*J.monomial(i) for i in range(len(J.gens())) )
             sage: x.is_regular()
             True
             sage: [ c.is_primitive_idempotent()
@@ -792,7 +776,9 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: J = JordanSpinEJA(5)
             sage: J.one().is_regular()
             False
-            sage: e0, e1, e2, e3, e4 = J.gens() # e0 is the identity
+            sage: b0, b1, b2, b3, b4 = J.gens()
+            sage: b0 == J.one()
+            True
             sage: for x in J.gens():
             ....:     (J.one() + x).is_regular()
             False
@@ -830,10 +816,7 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
 
         ALGORITHM:
 
-        For now, we skip the messy minimal polynomial computation
-        and instead return the dimension of the vector space spanned
-        by the powers of this element. The latter is a bit more
-        straightforward to compute.
+        .........
 
         SETUP::
 
@@ -845,8 +828,8 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: J = JordanSpinEJA(4)
             sage: J.one().degree()
             1
-            sage: e0,e1,e2,e3 = J.gens()
-            sage: (e0 - e1).degree()
+            sage: b0,b1,b2,b3 = J.gens()
+            sage: (b0 - b1).degree()
             2
 
         In the spin factor algebra (of rank two), all elements that
@@ -881,12 +864,59 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             True
 
         """
-        if self.is_zero() and not self.parent().is_trivial():
+        n = self.parent().dimension()
+
+        if n == 0:
+            # The minimal polynomial is an empty product, i.e. the
+            # constant polynomial "1" having degree zero.
+            return 0
+        elif self.is_zero():
             # The minimal polynomial of zero in a nontrivial algebra
-            # is "t"; in a trivial algebra it's "1" by convention
-            # (it's an empty product).
+            # is "t", and is of degree one.
+            return 1
+        elif n == 1:
+            # If this is a nonzero element of a nontrivial algebra, it
+            # has degree at least one. It follows that, in an algebra
+            # of dimension one, the degree must be actually one.
             return 1
-        return self.subalgebra_generated_by().dimension()
+
+        # BEWARE: The subalgebra_generated_by() method uses the result
+        # of this method to construct a basis for the subalgebra. That
+        # means, in particular, that we cannot implement this method
+        # as ``self.subalgebra_generated_by().dimension()``.
+
+        # Algorithm: keep appending (vector representations of) powers
+        # self as rows to a matrix and echelonizing it. When its rank
+        # stops increasing, we've reached a redundancy.
+
+        # Given the special cases above, we can assume that "self" is
+        # nonzero, the algebra is nontrivial, and that its dimension
+        # is at least two.
+        M = matrix([(self.parent().one()).to_vector()])
+        old_rank = 1
+
+        # Specifying the row-reduction algorithm can e.g. help over
+        # AA because it avoids the RecursionError that gets thrown
+        # when we have to look too hard for a root.
+        #
+        # Beware: QQ supports an entirely different set of "algorithm"
+        # keywords than do AA and RR.
+        algo = None
+        from sage.rings.all import QQ
+        if self.parent().base_ring() is not QQ:
+            algo = "scaled_partial_pivoting"
+
+        for d in range(1,n):
+            M = matrix(M.rows() + [(self**d).to_vector()])
+            M.echelonize(algo)
+            new_rank = M.rank()
+            if new_rank == old_rank:
+                return new_rank
+            else:
+                old_rank = new_rank
+
+        return n
+
 
 
     def left_matrix(self):
@@ -1002,19 +1032,30 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
 
         """
         if self.is_zero():
-            # We would generate a zero-dimensional subalgebra
-            # where the minimal polynomial would be constant.
-            # That might be correct, but only if *this* algebra
-            # is trivial too.
-            if not self.parent().is_trivial():
-                # Pretty sure we know what the minimal polynomial of
-                # the zero operator is going to be. This ensures
-                # consistency of e.g. the polynomial variable returned
-                # in the "normal" case without us having to think about it.
-                return self.operator().minimal_polynomial()
-
-        A = self.subalgebra_generated_by(orthonormalize_basis=False)
-        return A(self).operator().minimal_polynomial()
+            # Pretty sure we know what the minimal polynomial of
+            # the zero operator is going to be. This ensures
+            # consistency of e.g. the polynomial variable returned
+            # in the "normal" case without us having to think about it.
+            return self.operator().minimal_polynomial()
+
+        # If we don't orthonormalize the subalgebra's basis, then the
+        # first two monomials in the subalgebra will be self^0 and
+        # self^1... assuming that self^1 is not a scalar multiple of
+        # self^0 (the unit element). We special case these to avoid
+        # having to solve a system to coerce self into the subalgebra.
+        A = self.subalgebra_generated_by(orthonormalize=False)
+
+        if A.dimension() == 1:
+            # Does a solve to find the scalar multiple alpha such that
+            # alpha*unit = self. We have to do this because the basis
+            # for the subalgebra will be [ self^0 ], and not [ self^1 ]!
+            unit = self.parent().one()
+            alpha = self.to_vector() / unit.to_vector()
+            return (unit.operator()*alpha).minimal_polynomial()
+        else:
+            # If the dimension of the subalgebra is >= 2, then we just
+            # use the second basis element.
+            return A.monomial(1).operator().minimal_polynomial()
 
 
 
@@ -1032,44 +1073,65 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-            ....:                                  QuaternionHermitianEJA)
+            ....:                                  HadamardEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  RealSymmetricEJA)
 
         EXAMPLES::
 
             sage: J = ComplexHermitianEJA(3)
             sage: J.one()
-            e0 + e3 + e8
+            b0 + b3 + b8
             sage: J.one().to_matrix()
-            [1 0 0 0 0 0]
-            [0 1 0 0 0 0]
-            [0 0 1 0 0 0]
-            [0 0 0 1 0 0]
-            [0 0 0 0 1 0]
-            [0 0 0 0 0 1]
+            +---+---+---+
+            | 1 | 0 | 0 |
+            +---+---+---+
+            | 0 | 1 | 0 |
+            +---+---+---+
+            | 0 | 0 | 1 |
+            +---+---+---+
 
         ::
 
             sage: J = QuaternionHermitianEJA(2)
             sage: J.one()
-            e0 + e5
+            b0 + b5
             sage: J.one().to_matrix()
-            [1 0 0 0 0 0 0 0]
-            [0 1 0 0 0 0 0 0]
-            [0 0 1 0 0 0 0 0]
-            [0 0 0 1 0 0 0 0]
-            [0 0 0 0 1 0 0 0]
-            [0 0 0 0 0 1 0 0]
-            [0 0 0 0 0 0 1 0]
-            [0 0 0 0 0 0 0 1]
+            +---+---+
+            | 1 | 0 |
+            +---+---+
+            | 0 | 1 |
+            +---+---+
+
+        This also works in Cartesian product algebras::
+
+            sage: J1 = HadamardEJA(1)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: x = sum(J.gens())
+            sage: x.to_matrix()[0]
+            [1]
+            sage: x.to_matrix()[1]
+            [                  1 0.7071067811865475?]
+            [0.7071067811865475?                   1]
 
         """
         B = self.parent().matrix_basis()
         W = self.parent().matrix_space()
 
-        # This is just a manual "from_vector()", but of course
-        # matrix spaces aren't vector spaces in sage, so they
-        # don't have a from_vector() method.
-        return W.linear_combination( zip(B, self.to_vector()) )
+        if hasattr(W, 'cartesian_factors'):
+            # Aaaaand linear combinations don't work in Cartesian
+            # product spaces, even though they provide a method with
+            # that name. This is hidden behind an "if" because the
+            # _scale() function is slow.
+            pairs = zip(B, self.to_vector())
+            return W.sum( _scale(b, alpha) for (b,alpha) in pairs )
+        else:
+            # This is just a manual "from_vector()", but of course
+            # matrix spaces aren't vector spaces in sage, so they
+            # don't have a from_vector() method.
+            return W.linear_combination( zip(B, self.to_vector()) )
+
 
 
     def norm(self):
@@ -1276,11 +1338,11 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
 
             sage: J = RealSymmetricEJA(3)
             sage: J.one()
-            e0 + e2 + e5
+            b0 + b2 + b5
             sage: J.one().spectral_decomposition()
-            [(1, e0 + e2 + e5)]
+            [(1, b0 + b2 + b5)]
             sage: J.zero().spectral_decomposition()
-            [(0, e0 + e2 + e5)]
+            [(0, b0 + b2 + b5)]
 
         TESTS::
 
@@ -1305,22 +1367,22 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
         The spectral decomposition should work in subalgebras, too::
 
             sage: J = RealSymmetricEJA(4)
-            sage: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9) = J.gens()
-            sage: A = 2*e5 - 2*e8
+            sage: (b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) = J.gens()
+            sage: A = 2*b5 - 2*b8
             sage: (lambda1, c1) = A.spectral_decomposition()[1]
             sage: (J0, J5, J1) = J.peirce_decomposition(c1)
             sage: (f0, f1, f2) = J1.gens()
             sage: f0.spectral_decomposition()
-            [(0, f2), (1, f0)]
+            [(0, c2), (1, c0)]
 
         """
-        A = self.subalgebra_generated_by(orthonormalize_basis=True)
+        A = self.subalgebra_generated_by(orthonormalize=True)
         result = []
         for (evalue, proj) in A(self).operator().spectral_decomposition():
             result.append( (evalue, proj(A.one()).superalgebra_element()) )
         return result
 
-    def subalgebra_generated_by(self, orthonormalize_basis=False):
+    def subalgebra_generated_by(self, **kwargs):
         """
         Return the associative subalgebra of the parent EJA generated
         by this element.
@@ -1334,7 +1396,20 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import random_eja
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES:
+
+        We can create subalgebras of Cartesian product EJAs that are not
+        themselves Cartesian product EJAs (they're just "regular" EJAs)::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.one().subalgebra_generated_by()
+            Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
 
         TESTS:
 
@@ -1367,8 +1442,14 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             True
 
         """
-        from mjo.eja.eja_element_subalgebra import FiniteDimensionalEJAElementSubalgebra
-        return FiniteDimensionalEJAElementSubalgebra(self, orthonormalize_basis)
+        powers = tuple( self**k for k in range(self.degree()) )
+        A = self.parent().subalgebra(powers,
+                                     associative=True,
+                                     check_field=False,
+                                     check_axioms=False,
+                                     **kwargs)
+        A.one.set_cache(A(self.parent().one()))
+        return A
 
 
     def subalgebra_idempotent(self):
@@ -1475,6 +1556,15 @@ class FiniteDimensionalEJAElement(IndexedFreeModuleElement):
             sage: J.random_element().trace() in RLF
             True
 
+        The trace is linear::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: x,y = J.random_elements(2)
+            sage: alpha = J.base_ring().random_element()
+            sage: (alpha*x + y).trace() == alpha*x.trace() + y.trace()
+            True
+
         """
         P = self.parent()
         r = P.rank()