]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / eja / eja_algebra.py
index d7010bcfd63ff838c0219dc7208a9b8e1988c889..adcc3436b1302e09cd20007d0525aee08e32a48f 100644 (file)
@@ -1,4 +1,4 @@
-"""
+r"""
 Representations and constructions for Euclidean Jordan algebras.
 
 A Euclidean Jordan algebra is a Jordan algebra that has some
@@ -32,22 +32,118 @@ for these simple algebras:
   * :class:`RealSymmetricEJA`
   * :class:`ComplexHermitianEJA`
   * :class:`QuaternionHermitianEJA`
+  * :class:`OctonionHermitianEJA`
 
-Missing from this list is the algebra of three-by-three octononion
-Hermitian matrices, as there is (as of yet) no implementation of the
-octonions in SageMath. In addition to these, we provide two other
-example constructions,
+In addition to these, we provide a few other example constructions,
 
+  * :class:`JordanSpinEJA`
   * :class:`HadamardEJA`
+  * :class:`AlbertEJA`
   * :class:`TrivialEJA`
+  * :class:`ComplexSkewSymmetricEJA`
 
 The Jordan spin algebra is a bilinear form algebra where the bilinear
 form is the identity. The Hadamard EJA is simply a Cartesian product
-of one-dimensional spin algebras. And last but not least, the trivial
-EJA is exactly what you think. Cartesian products of these are also
-supported using the usual ``cartesian_product()`` function; as a
-result, we support (up to isomorphism) all Euclidean Jordan algebras
-that don't involve octonions.
+of one-dimensional spin algebras. The Albert EJA is simply a special
+case of the :class:`OctonionHermitianEJA` where the matrices are
+three-by-three and the resulting space has dimension 27. And
+last/least, the trivial EJA is exactly what you think it is; it could
+also be obtained by constructing a dimension-zero instance of any of
+the other algebras. Cartesian products of these are also supported
+using the usual ``cartesian_product()`` function; as a result, we
+support (up to isomorphism) all Euclidean Jordan algebras.
+
+At a minimum, the following are required to construct a Euclidean
+Jordan algebra:
+
+  * A basis of matrices, column vectors, or MatrixAlgebra elements
+  * A Jordan product defined on the basis
+  * Its inner product defined on the basis
+
+The real numbers form a Euclidean Jordan algebra when both the Jordan
+and inner products are the usual multiplication. We use this as our
+example, and demonstrate a few ways to construct an EJA.
+
+First, we can use one-by-one SageMath matrices with algebraic real
+entries to represent real numbers. We define the Jordan and inner
+products to be essentially real-number multiplication, with the only
+difference being that the Jordan product again returns a one-by-one
+matrix, whereas the inner product must return a scalar. Our basis for
+the one-by-one matrices is of course the set consisting of a single
+matrix with its sole entry non-zero::
+
+    sage: from mjo.eja.eja_algebra import EJA
+    sage: jp = lambda X,Y: X*Y
+    sage: ip = lambda X,Y: X[0,0]*Y[0,0]
+    sage: b1 = matrix(AA, [[1]])
+    sage: J1 = EJA((b1,), jp, ip)
+    sage: J1
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+
+In fact, any positive scalar multiple of that inner-product would work::
+
+    sage: ip2 = lambda X,Y: 16*ip(X,Y)
+    sage: J2 = EJA((b1,), jp, ip2)
+    sage: J2
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+
+But beware that your basis will be orthonormalized _with respect to the
+given inner-product_ unless you pass ``orthonormalize=False`` to the
+constructor. For example::
+
+    sage: J3 = EJA((b1,), jp, ip2, orthonormalize=False)
+    sage: J3
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+
+To see the difference, you can take the first and only basis element
+of the resulting algebra, and ask for it to be converted back into
+matrix form::
+
+    sage: J1.basis()[0].to_matrix()
+    [1]
+    sage: J2.basis()[0].to_matrix()
+    [1/4]
+    sage: J3.basis()[0].to_matrix()
+    [1]
+
+Since square roots are used in that process, the default scalar field
+that we use is the field of algebraic real numbers, ``AA``. You can
+also Use rational numbers, but only if you either pass
+``orthonormalize=False`` or know that orthonormalizing your basis
+won't stray beyond the rational numbers. The example above would
+have worked only because ``sqrt(16) == 4`` is rational.
+
+Another option for your basis is to use elemebts of a
+:class:`MatrixAlgebra`::
+
+    sage: from mjo.matrix_algebra import MatrixAlgebra
+    sage: A = MatrixAlgebra(1,AA,AA)
+    sage: J4 = EJA(A.gens(), jp, ip)
+    sage: J4
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+    sage: J4.basis()[0].to_matrix()
+    +---+
+    | 1 |
+    +---+
+
+An easier way to view the entire EJA basis in its original (but
+perhaps orthonormalized) matrix form is to use the ``matrix_basis``
+method::
+
+    sage: J4.matrix_basis()
+    (+---+
+    | 1 |
+     +---+,)
+
+In particular, a :class:`MatrixAlgebra` is needed to work around the
+fact that matrices in SageMath must have entries in the same
+(commutative and associative) ring as its scalars. There are many
+Euclidean Jordan algebras whose elements are matrices that violate
+those assumptions. The complex, quaternion, and octonion Hermitian
+matrices all have entries in a ring (the complex numbers, quaternions,
+or octonions...) that differs from the algebra's scalar ring (the real
+numbers). Quaternions are also non-commutative; the octonions are
+neither commutative nor associative.
 
 SETUP::
 
@@ -59,8 +155,6 @@ EXAMPLES::
     Euclidean Jordan algebra of dimension...
 """
 
-from itertools import repeat
-
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
 from sage.categories.sets_cat import cartesian_product
@@ -73,11 +167,23 @@ from sage.modules.free_module import FreeModule, VectorSpace
 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
                             PolynomialRing,
                             QuadraticField)
-from mjo.eja.eja_element import FiniteDimensionalEJAElement
-from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
-from mjo.eja.eja_utils import _all2list, _mat2vec
+from mjo.eja.eja_element import (CartesianProductEJAElement,
+                                 EJAElement)
+from mjo.eja.eja_operator import EJAOperator
+from mjo.eja.eja_utils import _all2list
+
+def EuclideanJordanAlgebras(field):
+    r"""
+    The category of Euclidean Jordan algebras over ``field``, which
+    must be a subfield of the real numbers. For now this is just a
+    convenient wrapper around all of the other category axioms that
+    apply to all EJAs.
+    """
+    category = MagmaticAlgebras(field).FiniteDimensional()
+    category = category.WithBasis().Unital().Commutative()
+    return category
 
-class FiniteDimensionalEJA(CombinatorialFreeModule):
+class EJA(CombinatorialFreeModule):
     r"""
     A finite-dimensional Euclidean Jordan algebra.
 
@@ -103,6 +209,11 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         product. This will be applied to ``basis`` to compute an
         inner-product table (basically a matrix) for this algebra.
 
+      - ``matrix_space`` -- the space that your matrix basis lives in,
+        or ``None`` (the default). So long as your basis does not have
+        length zero you can omit this. But in trivial algebras, it is
+        required.
+
       - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
         field for the algebra.
 
@@ -120,25 +231,43 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
     We should compute that an element subalgebra is associative even
     if we circumvent the element method::
 
-        sage: set_random_seed()
         sage: J = random_eja(field=QQ,orthonormalize=False)
         sage: x = J.random_element()
         sage: A = x.subalgebra_generated_by(orthonormalize=False)
         sage: basis = tuple(b.superalgebra_element() for b in A.basis())
         sage: J.subalgebra(basis, orthonormalize=False).is_associative()
         True
-
     """
-    Element = FiniteDimensionalEJAElement
+    Element = EJAElement
+
+    @staticmethod
+    def _check_input_field(field):
+        if not field.is_subring(RR):
+            # Note: this does return true for the real algebraic
+            # field, the rationals, and any quadratic field where
+            # we've specified a real embedding.
+            raise ValueError("scalar field is not real")
+
+    @staticmethod
+    def _check_input_axioms(basis, jordan_product, inner_product):
+        if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
+                    for bi in basis
+                    for bj in basis ):
+            raise ValueError("Jordan product is not commutative")
+
+        if not all( inner_product(bi,bj) == inner_product(bj,bi)
+                    for bi in basis
+                    for bj in basis ):
+            raise ValueError("inner-product is not commutative")
 
     def __init__(self,
                  basis,
                  jordan_product,
                  inner_product,
                  field=AA,
+                 matrix_space=None,
                  orthonormalize=True,
                  associative=None,
-                 cartesian_product=False,
                  check_field=True,
                  check_axioms=True,
                  prefix="b"):
@@ -146,31 +275,20 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         n = len(basis)
 
         if check_field:
-            if not field.is_subring(RR):
-                # Note: this does return true for the real algebraic
-                # field, the rationals, and any quadratic field where
-                # we've specified a real embedding.
-                raise ValueError("scalar field is not real")
+            self._check_input_field(field)
 
         if check_axioms:
             # Check commutativity of the Jordan and inner-products.
             # This has to be done before we build the multiplication
             # and inner-product tables/matrices, because we take
             # advantage of symmetry in the process.
-            if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
-                        for bi in basis
-                        for bj in basis ):
-                raise ValueError("Jordan product is not commutative")
-
-            if not all( inner_product(bi,bj) == inner_product(bj,bi)
-                        for bi in basis
-                        for bj in basis ):
-                raise ValueError("inner-product is not commutative")
-
-
-        category = MagmaticAlgebras(field).FiniteDimensional()
-        category = category.WithBasis().Unital().Commutative()
+            self._check_input_axioms(basis, jordan_product, inner_product)
 
+        if n <= 1:
+            # All zero- and one-dimensional algebras are just the real
+            # numbers with (some positive multiples of) the usual
+            # multiplication as its Jordan and inner-product.
+            associative = True
         if associative is None:
             # We should figure it out. As with check_axioms, we have to do
             # this without the help of the _jordan_product_is_associative()
@@ -183,14 +301,11 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                                for bj in basis
                                for bk in basis)
 
+        category = EuclideanJordanAlgebras(field)
+
         if associative:
             # Element subalgebras can take advantage of this.
             category = category.Associative()
-        if cartesian_product:
-            # Use join() here because otherwise we only get the
-            # "Cartesian product of..." and not the things themselves.
-            category = category.join([category,
-                                      category.CartesianProducts()])
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
@@ -206,7 +321,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # as well as a subspace W of V spanned by those (vectorized)
         # basis elements. The W-coordinates are the coefficients that
         # we see in things like x = 1*b1 + 2*b2.
-        vector_basis = basis
 
         degree = 0
         if n > 0:
@@ -216,9 +330,11 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # written out as "long vectors."
         V = VectorSpace(field, degree)
 
-        # The matrix that will hole the orthonormal -> unorthonormal
-        # coordinate transformation.
-        self._deortho_matrix = None
+        # The matrix that will hold the orthonormal -> unorthonormal
+        # coordinate transformation. Default to an identity matrix of
+        # the appropriate size to avoid special cases for None
+        # everywhere.
+        self._deortho_matrix = matrix.identity(field,n)
 
         if orthonormalize:
             # Save a copy of the un-orthonormalized basis for later.
@@ -230,30 +346,42 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             basis = tuple(gram_schmidt(basis, inner_product))
 
         # Save the (possibly orthonormalized) matrix basis for
-        # later...
+        # later, as well as the space that its elements live in.
+        # In most cases we can deduce the matrix space, but when
+        # n == 0 (that is, there are no basis elements) we cannot.
         self._matrix_basis = basis
+        if matrix_space is None:
+            self._matrix_space = self._matrix_basis[0].parent()
+        else:
+            self._matrix_space = matrix_space
 
         # Now create the vector space for the algebra, which will have
         # its own set of non-ambient coordinates (in terms of the
         # supplied basis).
         vector_basis = tuple( V(_all2list(b)) for b in basis )
-        W = V.span_of_basis( vector_basis, check=check_axioms)
+
+        # Save the span of our matrix basis (when written out as long
+        # vectors) because otherwise we'll have to reconstruct it
+        # every time we want to coerce a matrix into the algebra.
+        self._matrix_span = V.span_of_basis( vector_basis, check=check_axioms)
 
         if orthonormalize:
-            # Now "W" is the vector space of our algebra coordinates. The
-            # variables "X1", "X2",...  refer to the entries of vectors in
-            # W. Thus to convert back and forth between the orthonormal
-            # coordinates and the given ones, we need to stick the original
-            # basis in W.
+            # Now "self._matrix_span" is the vector space of our
+            # algebra coordinates. The variables "X0", "X1",...  refer
+            # to the entries of vectors in self._matrix_span. Thus to
+            # convert back and forth between the orthonormal
+            # coordinates and the given ones, we need to stick the
+            # original basis in self._matrix_span.
             U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
-            self._deortho_matrix = matrix( U.coordinate_vector(q)
-                                           for q in vector_basis )
+            self._deortho_matrix = matrix.column( U.coordinate_vector(q)
+                                                  for q in vector_basis )
 
 
         # Now we actually compute the multiplication and inner-product
         # tables/matrices using the possibly-orthonormalized basis.
         self._inner_product_matrix = matrix.identity(field, n)
-        self._multiplication_table = [ [0 for j in range(i+1)]
+        zed = self.zero()
+        self._multiplication_table = [ [zed for j in range(i+1)]
                                        for i in range(n) ]
 
         # Note: the Jordan and inner-products are defined in terms
@@ -268,7 +396,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 # The jordan product returns a matrixy answer, so we
                 # have to convert it to the algebra coordinates.
                 elt = jordan_product(q_i, q_j)
-                elt = W.coordinate_vector(V(_all2list(elt)))
+                elt = self._matrix_span.coordinate_vector(V(_all2list(elt)))
                 self._multiplication_table[i][j] = self.from_vector(elt)
 
                 if not orthonormalize:
@@ -304,7 +432,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         TESTS::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: J(1)
             Traceback (most recent call last):
@@ -329,7 +456,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         TESTS::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: n = J.dimension()
             sage: bi = J.zero()
@@ -371,7 +497,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Our inner product is "associative," which means the following for
         a symmetric bilinear form::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: x,y,z = J.random_elements(3)
             sage: (x*y).inner_product(z) == y.inner_product(x*z)
@@ -382,7 +507,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Ensure that this is the usual inner product for the algebras
         over `R^n`::
 
-            sage: set_random_seed()
             sage: J = HadamardEJA.random_instance()
             sage: x,y = J.random_elements(2)
             sage: actual = x.inner_product(y)
@@ -395,7 +519,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         one). This is in Faraut and Koranyi, and also my "On the
         symmetry..." paper::
 
-            sage: set_random_seed()
             sage: J = BilinearFormEJA.random_instance()
             sage: n = J.dimension()
             sage: x = J.random_element()
@@ -508,7 +631,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         The values we've presupplied to the constructors agree with
         the computation::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: J.is_associative() == J._jordan_product_is_associative()
             True
@@ -575,8 +697,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
     def _element_constructor_(self, elt):
         """
-        Construct an element of this algebra from its vector or matrix
-        representation.
+        Construct an element of this algebra or a subalgebra from its
+        EJA element, vector, or matrix representation.
 
         This gets called only after the parent element _call_ method
         fails to find a coercion for the argument.
@@ -615,12 +737,21 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
             b1 + b5
 
+        Subalgebra elements are embedded into the superalgebra::
+
+            sage: J = JordanSpinEJA(3)
+            sage: J.one()
+            b0
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: J(A.one())
+            b0
+
         TESTS:
 
         Ensure that we can convert any element back and forth
         faithfully between its matrix and algebra representations::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: x = J.random_element()
             sage: J(x.to_matrix()) == x
@@ -639,6 +770,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             Traceback (most recent call last):
             ...
             ValueError: not an element of this algebra
+
         """
         msg = "not an element of this algebra"
         if elt in self.base_ring():
@@ -648,13 +780,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             # that the integer 3 belongs to the space of 2-by-2 matrices.
             raise ValueError(msg)
 
-        try:
-            # Try to convert a vector into a column-matrix...
+        if hasattr(elt, 'superalgebra_element'):
+            # Handle subalgebra elements
+            if elt.parent().superalgebra() == self:
+                return elt.superalgebra_element()
+
+        if hasattr(elt, 'sparse_vector'):
+            # Convert a vector into a column-matrix. We check for
+            # "sparse_vector" and not "column" because matrices also
+            # have a "column" method.
             elt = elt.column()
-        except (AttributeError, TypeError):
-            # and ignore failure, because we weren't really expecting
-            # a vector as an argument anyway.
-            pass
 
         if elt not in self.matrix_space():
             raise ValueError(msg)
@@ -671,15 +806,10 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # is that we're already converting everything to long vectors,
         # and that strategy works for tuples as well.
         #
-        # We pass check=False because the matrix basis is "guaranteed"
-        # to be linearly independent... right? Ha ha.
-        elt = _all2list(elt)
-        V = VectorSpace(self.base_ring(), len(elt))
-        W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
-                             check=False)
+        elt = self._matrix_span.ambient_vector_space()(_all2list(elt))
 
         try:
-            coords = W.coordinate_vector(V(elt))
+            coords = self._matrix_span.coordinate_vector(elt)
         except ArithmeticError:  # vector is not in free module
             raise ValueError(msg)
 
@@ -734,7 +864,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: J = JordanSpinEJA(3)
             sage: p = J.characteristic_polynomial_of(); p
-            X1^2 - X2^2 - X3^2 + (-2*t)*X1 + t^2
+            X0^2 - X1^2 - X2^2 + (-2*t)*X0 + t^2
             sage: xvec = J.one().to_vector()
             sage: p(*xvec)
             t^2 - 2*t + 1
@@ -783,13 +913,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: J = HadamardEJA(2)
             sage: J.coordinate_polynomial_ring()
-            Multivariate Polynomial Ring in X1, X2...
+            Multivariate Polynomial Ring in X0, X1...
             sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
             sage: J.coordinate_polynomial_ring()
-            Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
+            Multivariate Polynomial Ring in X0, X1, X2, X3, X4, X5...
 
         """
-        var_names = tuple( "X%d" % z for z in range(1, self.dimension()+1) )
+        var_names = tuple( "X%d" % z for z in range(self.dimension()) )
         return PolynomialRing(self.base_ring(), var_names)
 
     def inner_product(self, x, y):
@@ -811,7 +941,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Our inner product is "associative," which means the following for
         a symmetric bilinear form::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: x,y,z = J.random_elements(3)
             sage: (x*y).inner_product(z) == y.inner_product(x*z)
@@ -822,7 +951,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Ensure that this is the usual inner product for the algebras
         over `R^n`::
 
-            sage: set_random_seed()
             sage: J = HadamardEJA.random_instance()
             sage: x,y = J.random_elements(2)
             sage: actual = x.inner_product(y)
@@ -835,7 +963,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         one). This is in Faraut and Koranyi, and also my "On the
         symmetry..." paper::
 
-            sage: set_random_seed()
             sage: J = BilinearFormEJA.random_instance()
             sage: n = J.dimension()
             sage: x = J.random_element()
@@ -1015,16 +1142,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
             sage: J.matrix_space()
-            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
+            Module of 2 by 2 matrices with entries in Algebraic Field over
+            the scalar ring Rational Field
             sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
             sage: J.matrix_space()
-            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
+            Module of 1 by 1 matrices with entries in Quaternion
+            Algebra (-1, -1) with base ring Rational Field over
+            the scalar ring Rational Field
 
         """
-        if self.is_trivial():
-            return MatrixSpace(self.base_ring(), 0)
-        else:
-            return self.matrix_basis()[0].parent()
+        return self._matrix_space
 
 
     @cached_method
@@ -1063,19 +1190,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         The identity element acts like the identity, regardless of
         whether or not we orthonormalize::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: x = J.random_element()
             sage: J.one()*x == x and x*J.one() == x
             True
-            sage: A = x.subalgebra_generated_by()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: y = A.random_element()
             sage: A.one()*y == y and y*A.one() == y
             True
 
         ::
 
-            sage: set_random_seed()
             sage: J = random_eja(field=QQ, orthonormalize=False)
             sage: x = J.random_element()
             sage: J.one()*x == x and x*J.one() == x
@@ -1089,14 +1214,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         regardless of the base field and whether or not we
         orthonormalize::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: actual = J.one().operator().matrix()
             sage: expected = matrix.identity(J.base_ring(), J.dimension())
             sage: actual == expected
             True
             sage: x = J.random_element()
-            sage: A = x.subalgebra_generated_by()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: actual = A.one().operator().matrix()
             sage: expected = matrix.identity(A.base_ring(), A.dimension())
             sage: actual == expected
@@ -1104,7 +1228,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         ::
 
-            sage: set_random_seed()
             sage: J = random_eja(field=QQ, orthonormalize=False)
             sage: actual = J.one().operator().matrix()
             sage: expected = matrix.identity(J.base_ring(), J.dimension())
@@ -1120,7 +1243,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Ensure that the cached unit element (often precomputed by
         hand) agrees with the computed one::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: cached = J.one()
             sage: J.one.clear_cache()
@@ -1129,7 +1251,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         ::
 
-            sage: set_random_seed()
             sage: J = random_eja(field=QQ, orthonormalize=False)
             sage: cached = J.one()
             sage: J.one.clear_cache()
@@ -1145,7 +1266,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         #
         # Of course, matrices aren't vectors in sage, so we have to
         # appeal to the "long vectors" isometry.
-        oper_vecs = [ _mat2vec(g.operator().matrix()) for g in self.gens() ]
+
+        V = VectorSpace(self.base_ring(), self.dimension()**2)
+        oper_vecs = [ V(g.operator().matrix().list()) for g in self.gens() ]
 
         # Now we use basic linear algebra to find the coefficients,
         # of the matrices-as-vectors-linear-combination, which should
@@ -1155,7 +1278,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # We used the isometry on the left-hand side already, but we
         # still need to do it for the right-hand side. Recall that we
         # wanted something that summed to the identity matrix.
-        b = _mat2vec( matrix.identity(self.base_ring(), self.dimension()) )
+        b = V( matrix.identity(self.base_ring(), self.dimension()).list() )
 
         # Now if there's an identity element in the algebra, this
         # should work. We solve on the left to avoid having to
@@ -1240,7 +1363,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Every algebra decomposes trivially with respect to its identity
         element::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: J0,J5,J1 = J.peirce_decomposition(J.one())
             sage: J0.dimension() == 0 and J5.dimension() == 0
@@ -1253,7 +1375,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         elements in the two subalgebras are the projections onto their
         respective subspaces of the superalgebra's identity element::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: x = J.random_element()
             sage: if not J.is_trivial():
@@ -1285,7 +1406,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # corresponding to trivial spaces (e.g. it returns only the
         # eigenspace corresponding to lambda=1 if you take the
         # decomposition relative to the identity element).
-        trivial = self.subalgebra(())
+        trivial = self.subalgebra((), check_axioms=False)
         J0 = trivial                          # eigenvalue zero
         J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
         J1 = trivial                          # eigenvalue one
@@ -1327,26 +1448,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # For a general base ring... maybe we can trust this to do the
         # right thing? Unlikely, but.
         V = self.vector_space()
-        v = V.random_element()
-
-        if self.base_ring() is AA:
-            # The "random element" method of the algebraic reals is
-            # stupid at the moment, and only returns integers between
-            # -2 and 2, inclusive:
-            #
-            #   https://trac.sagemath.org/ticket/30875
-            #
-            # Instead, we implement our own "random vector" method,
-            # and then coerce that into the algebra. We use the vector
-            # space degree here instead of the dimension because a
-            # subalgebra could (for example) be spanned by only two
-            # vectors, each with five coordinates.  We need to
-            # generate all five coordinates.
-            if thorough:
-                v *= QQbar.random_element().real()
-            else:
-                v *= QQ.random_element()
+        if self.base_ring() is AA and not thorough:
+            # Now that AA generates actually random random elements
+            # (post Trac 30875), we only need to de-thorough the
+            # randomness when asked to.
+            V = V.change_ring(QQ)
 
+        v = V.random_element()
         return self.from_vector(V.coordinate_vector(v))
 
     def random_elements(self, count, thorough=False):
@@ -1379,6 +1487,64 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                       for idx in range(count) )
 
 
+    def operator_polynomial_matrix(self):
+        r"""
+        Return the matrix of polynomials (over this algebra's
+        :meth:`coordinate_polynomial_ring`) that, when evaluated at
+        the basis coordinates of an element `x`, produces the basis
+        representation of `L_{x}`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  JordanSpinEJA)
+
+        EXAMPLES::
+
+            sage: J = HadamardEJA(4)
+            sage: L_x = J.operator_polynomial_matrix()
+            sage: L_x
+            [X0  0  0  0]
+            [ 0 X1  0  0]
+            [ 0  0 X2  0]
+            [ 0  0  0 X3]
+            sage: x = J.one()
+            sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector())
+            sage: L_x.subs(dict(d))
+            [1 0 0 0]
+            [0 1 0 0]
+            [0 0 1 0]
+            [0 0 0 1]
+
+        ::
+
+            sage: J = JordanSpinEJA(4)
+            sage: L_x = J.operator_polynomial_matrix()
+            sage: L_x
+            [X0 X1 X2 X3]
+            [X1 X0  0  0]
+            [X2  0 X0  0]
+            [X3  0  0 X0]
+            sage: x = J.one()
+            sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector())
+            sage: L_x.subs(dict(d))
+            [1 0 0 0]
+            [0 1 0 0]
+            [0 0 1 0]
+            [0 0 0 1]
+
+        """
+        R = self.coordinate_polynomial_ring()
+
+        def L_x_i_j(i,j):
+            # From a result in my book, these are the entries of the
+            # basis representation of L_x.
+            return sum( v*self.monomial(k).operator().matrix()[i,j]
+                        for (k,v) in enumerate(R.gens()) )
+
+        n = self.dimension()
+        return matrix(R, n, n, L_x_i_j)
+
     @cached_method
     def _charpoly_coefficients(self):
         r"""
@@ -1394,7 +1560,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         The theory shows that these are all homogeneous polynomials of
         a known degree::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
             True
@@ -1402,16 +1567,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         """
         n = self.dimension()
         R = self.coordinate_polynomial_ring()
-        vars = R.gens()
         F = R.fraction_field()
 
-        def L_x_i_j(i,j):
-            # From a result in my book, these are the entries of the
-            # basis representation of L_x.
-            return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
-                        for k in range(n) )
-
-        L_x = matrix(F, n, n, L_x_i_j)
+        L_x = self.operator_polynomial_matrix()
 
         r = None
         if self.rank.is_in_cache():
@@ -1492,7 +1650,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         positive integer rank, unless the algebra is trivial in
         which case its rank will be zero::
 
-            sage: set_random_seed()
             sage: J = random_eja()
             sage: r = J.rank()
             sage: r in ZZ
@@ -1503,7 +1660,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         Ensure that computing the rank actually works, since the ranks
         of all simple algebras are known and will be cached by default::
 
-            sage: set_random_seed()    # long time
             sage: J = random_eja()     # long time
             sage: cached = J.rank()    # long time
             sage: J.rank.clear_cache() # long time
@@ -1518,8 +1674,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         r"""
         Create a subalgebra of this algebra from the given basis.
         """
-        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
-        return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
+        from mjo.eja.eja_subalgebra import EJASubalgebra
+        return EJASubalgebra(self, basis, **kwargs)
 
 
     def vector_space(self):
@@ -1541,9 +1697,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
 
 
-class RationalBasisEJA(FiniteDimensionalEJA):
+class RationalBasisEJA(EJA):
     r"""
-    New class for algebras whose supplied basis elements have all rational entries.
+    Algebras whose supplied basis elements have all rational entries.
 
     SETUP::
 
@@ -1574,7 +1730,11 @@ class RationalBasisEJA(FiniteDimensionalEJA):
         if check_field:
             # Abuse the check_field parameter to check that the entries of
             # out basis (in ambient coordinates) are in the field QQ.
-            if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
+            # Use _all2list to get the vector coordinates of octonion
+            # entries and not the octonions themselves (which are not
+            # rational).
+            if not all( all(b_i in QQ for b_i in _all2list(b))
+                        for b in basis ):
                 raise TypeError("basis not rational")
 
         super().__init__(basis,
@@ -1592,16 +1752,26 @@ class RationalBasisEJA(FiniteDimensionalEJA):
             # Note: the same Jordan and inner-products work here,
             # because they are necessarily defined with respect to
             # ambient coordinates and not any particular basis.
-            self._rational_algebra = FiniteDimensionalEJA(
+            self._rational_algebra = EJA(
                                        basis,
                                        jordan_product,
                                        inner_product,
                                        field=QQ,
+                                       matrix_space=self.matrix_space(),
                                        associative=self.is_associative(),
                                        orthonormalize=False,
                                        check_field=False,
                                        check_axioms=False)
 
+    def rational_algebra(self):
+        # Using None as a flag here (rather than just assigning "self"
+        # to self._rational_algebra by default) feels a little bit
+        # more sane to me in a garbage-collected environment.
+        if self._rational_algebra is None:
+            return self
+        else:
+            return self._rational_algebra
+
     @cached_method
     def _charpoly_coefficients(self):
         r"""
@@ -1618,7 +1788,7 @@ class RationalBasisEJA(FiniteDimensionalEJA):
 
             sage: J = JordanSpinEJA(3)
             sage: J._charpoly_coefficients()
-            (X1^2 - X2^2 - X3^2, -2*X1)
+            (X0^2 - X1^2 - X2^2, -2*X0)
             sage: a0 = J._charpoly_coefficients()[0]
             sage: J.base_ring()
             Algebraic Real Field
@@ -1626,28 +1796,17 @@ class RationalBasisEJA(FiniteDimensionalEJA):
             Algebraic Real Field
 
         """
-        if self._rational_algebra is None:
-            # There's no need to construct *another* algebra over the
-            # rationals if this one is already over the
-            # rationals. Likewise, if we never orthonormalized our
-            # basis, we might as well just use the given one.
+        if self.rational_algebra() is self:
+            # Bypass the hijinks if they won't benefit us.
             return super()._charpoly_coefficients()
 
-        # Do the computation over the rationals. The answer will be
-        # the same, because all we've done is a change of basis.
-        # Then, change back from QQ to our real base ring
+        # Do the computation over the rationals.
         a = ( a_i.change_ring(self.base_ring())
-              for a_i in self._rational_algebra._charpoly_coefficients() )
+              for a_i in self.rational_algebra()._charpoly_coefficients() )
 
-        if self._deortho_matrix is None:
-            # This can happen if our base ring was, say, AA and we
-            # chose not to (or didn't need to) orthonormalize. It's
-            # still faster to do the computations over QQ even if
-            # the numbers in the boxes stay the same.
-            return tuple(a)
-
-        # Otherwise, convert the coordinate variables back to the
-        # deorthonormalized ones.
+        # Convert our coordinate variables into deorthonormalized ones
+        # and substitute them into the deorthonormalized charpoly
+        # coefficients.
         R = self.coordinate_polynomial_ring()
         from sage.modules.free_module_element import vector
         X = vector(R, R.gens())
@@ -1656,7 +1815,7 @@ class RationalBasisEJA(FiniteDimensionalEJA):
         subs_dict = { X[i]: BX[i] for i in range(len(X)) }
         return tuple( a_i.subs(subs_dict) for a_i in a )
 
-class ConcreteEJA(RationalBasisEJA):
+class ConcreteEJA(EJA):
     r"""
     A class for the Euclidean Jordan algebras that we know by name.
 
@@ -1674,7 +1833,6 @@ class ConcreteEJA(RationalBasisEJA):
     Our basis is normalized with respect to the algebra's inner
     product, unless we specify otherwise::
 
-        sage: set_random_seed()
         sage: J = ConcreteEJA.random_instance()
         sage: all( b.norm() == 1 for b in J.gens() )
         True
@@ -1685,7 +1843,6 @@ class ConcreteEJA(RationalBasisEJA):
     natural->EJA basis representation is an isometry and within the
     EJA the operator is self-adjoint by the Jordan axiom::
 
-        sage: set_random_seed()
         sage: J = ConcreteEJA.random_instance()
         sage: x = J.random_element()
         sage: x.operator().is_self_adjoint()
@@ -1693,27 +1850,62 @@ class ConcreteEJA(RationalBasisEJA):
     """
 
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_dimension():
+        r"""
+        The maximum dimension of any random instance. Ten dimensions seems
+        to be about the point where everything takes a turn for the
+        worse. And dimension ten (but not nine) allows the 4-by-4 real
+        Hermitian matrices, the 2-by-2 quaternion Hermitian matrices,
+        and the 2-by-2 octonion Hermitian matrices.
+        """
+        return 10
+
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
         """
         Return an integer "size" that is an upper bound on the size of
-        this algebra when it is used in a random test
-        case. Unfortunately, the term "size" is ambiguous -- when
-        dealing with `R^n` under either the Hadamard or Jordan spin
-        product, the "size" refers to the dimension `n`. When dealing
-        with a matrix algebra (real symmetric or complex/quaternion
-        Hermitian), it refers to the size of the matrix, which is far
-        less than the dimension of the underlying vector space.
+        this algebra when it is used in a random test case. This size
+        (which can be passed to the algebra's constructor) is itself
+        based on the ``max_dimension`` parameter.
 
         This method must be implemented in each subclass.
         """
         raise NotImplementedError
 
     @classmethod
-    def random_instance(cls, *args, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
-        Return a random instance of this type of algebra.
+        Return a random instance of this type of algebra whose dimension
+        is less than or equal to the lesser of ``max_dimension`` and
+        the value returned by ``_max_random_instance_dimension()``. If
+        the dimension bound is omitted, then only the
+        ``_max_random_instance_dimension()`` is used as a bound.
 
         This method should be implemented in each subclass.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import ConcreteEJA
+
+        TESTS:
+
+        Both the class bound and the ``max_dimension`` argument are upper
+        bounds on the dimension of the algebra returned::
+
+            sage: from sage.misc.prandom import choice
+            sage: eja_class = choice(ConcreteEJA.__subclasses__())
+            sage: class_max_d = eja_class._max_random_instance_dimension()
+            sage: J = eja_class.random_instance(max_dimension=20,
+            ....:                               field=QQ,
+            ....:                               orthonormalize=False)
+            sage: J.dimension() <= class_max_d
+            True
+            sage: J = eja_class.random_instance(max_dimension=2,
+            ....:                               field=QQ,
+            ....:                               orthonormalize=False)
+            sage: J.dimension() <= 2
+            True
+
         """
         from sage.misc.prandom import choice
         eja_class = choice(cls.__subclasses__())
@@ -1721,119 +1913,162 @@ class ConcreteEJA(RationalBasisEJA):
         # These all bubble up to the RationalBasisEJA superclass
         # constructor, so any (kw)args valid there are also valid
         # here.
-        return eja_class.random_instance(*args, **kwargs)
+        return eja_class.random_instance(max_dimension, *args, **kwargs)
 
 
-class MatrixEJA:
+class HermitianMatrixEJA(EJA):
     @staticmethod
-    def jordan_product(X,Y):
-        return (X*Y + Y*X)/2
-
-    @staticmethod
-    def trace_inner_product(X,Y):
-        r"""
-        A trace inner-product for matrices that aren't embedded in the
-        reals.
+    def _denormalized_basis(A):
         """
-        # We take the norm (absolute value) because Octonions() isn't
-        # smart enough yet to coerce its one() into the base field.
-        return (X*Y).trace().abs()
+        Returns a basis for the given Hermitian matrix space.
 
-class RealEmbeddedMatrixEJA(MatrixEJA):
-    @staticmethod
-    def dimension_over_reals():
-        r"""
-        The dimension of this matrix's base ring over the reals.
+        Why do we embed these? Basically, because all of numerical linear
+        algebra assumes that you're working with vectors consisting of `n`
+        entries from a field and scalars from the same field. There's no way
+        to tell SageMath that (for example) the vectors contain complex
+        numbers, while the scalar field is real.
 
-        The reals are dimension one over themselves, obviously; that's
-        just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
-        have dimension two. Finally, the quaternions have dimension
-        four over the reals.
+        SETUP::
 
-        This is used to determine the size of the matrix returned from
-        :meth:`real_embed`, among other things.
-        """
-        raise NotImplementedError
+            sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
+            ....:                          QuaternionMatrixAlgebra,
+            ....:                          OctonionMatrixAlgebra)
+            sage: from mjo.eja.eja_algebra import HermitianMatrixEJA
 
-    @classmethod
-    def real_embed(cls,M):
-        """
-        Embed the matrix ``M`` into a space of real matrices.
+        TESTS::
 
-        The matrix ``M`` can have entries in any field at the moment:
-        the real numbers, complex numbers, or quaternions. And although
-        they are not a field, we can probably support octonions at some
-        point, too. This function returns a real matrix that "acts like"
-        the original with respect to matrix multiplication; i.e.
+            sage: n = ZZ.random_element(1,5)
+            sage: A = MatrixSpace(QQ, n)
+            sage: B = HermitianMatrixEJA._denormalized_basis(A)
+            sage: all( M.is_hermitian() for M in  B)
+            True
 
-          real_embed(M*N) = real_embed(M)*real_embed(N)
+        ::
 
-        """
-        if M.ncols() != M.nrows():
-            raise ValueError("the matrix 'M' must be square")
-        return M
+            sage: n = ZZ.random_element(1,5)
+            sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
+            sage: B = HermitianMatrixEJA._denormalized_basis(A)
+            sage: all( M.is_hermitian() for M in  B)
+            True
 
+        ::
+
+            sage: n = ZZ.random_element(1,5)
+            sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
+            sage: B = HermitianMatrixEJA._denormalized_basis(A)
+            sage: all( M.is_hermitian() for M in B )
+            True
+
+        ::
+
+            sage: n = ZZ.random_element(1,5)
+            sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
+            sage: B = HermitianMatrixEJA._denormalized_basis(A)
+            sage: all( M.is_hermitian() for M in B )
+            True
 
-    @classmethod
-    def real_unembed(cls,M):
-        """
-        The inverse of :meth:`real_embed`.
         """
-        if M.ncols() != M.nrows():
-            raise ValueError("the matrix 'M' must be square")
-        if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
-            raise ValueError("the matrix 'M' must be a real embedding")
-        return M
+        # These work for real MatrixSpace, whose monomials only have
+        # two coordinates (because the last one would always be "1").
+        es = A.base_ring().gens()
+        gen = lambda A,m: A.monomial(m[:2])
 
+        if hasattr(A, 'entry_algebra_gens'):
+            # We've got a MatrixAlgebra, and its monomials will have
+            # three coordinates.
+            es = A.entry_algebra_gens()
+            gen = lambda A,m: A.monomial(m)
 
-    @classmethod
-    def trace_inner_product(cls,X,Y):
+        basis = []
+        for i in range(A.nrows()):
+            for j in range(i+1):
+                if i == j:
+                    E_ii = gen(A, (i,j,es[0]))
+                    basis.append(E_ii)
+                else:
+                    for e in es:
+                        E_ij  = gen(A, (i,j,e))
+                        E_ij += E_ij.conjugate_transpose()
+                        basis.append(E_ij)
+
+        return tuple( basis )
+
+    @staticmethod
+    def jordan_product(X,Y):
+        return (X*Y + Y*X)/2
+
+    @staticmethod
+    def trace_inner_product(X,Y):
         r"""
-        Compute the trace inner-product of two real-embeddings.
+        A trace inner-product for matrices that aren't embedded in the
+        reals. It takes MATRICES as arguments, not EJA elements.
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-            ....:                                  QuaternionHermitianEJA)
+            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  OctonionHermitianEJA)
 
         EXAMPLES::
 
-            sage: set_random_seed()
-            sage: J = ComplexHermitianEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = J.real_unembed(Xe)
-            sage: Y = J.real_unembed(Ye)
-            sage: expected = (X*Y).trace().real()
-            sage: actual = J.trace_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
+            sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
+            sage: I = J.one().to_matrix()
+            sage: J.trace_inner_product(I, -I)
+            -2
 
         ::
 
-            sage: set_random_seed()
-            sage: J = QuaternionHermitianEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = J.real_unembed(Xe)
-            sage: Y = J.real_unembed(Ye)
-            sage: expected = (X*Y).trace().coefficient_tuple()[0]
-            sage: actual = J.trace_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: I = J.one().to_matrix()
+            sage: J.trace_inner_product(I, -I)
+            -2
+
+        ::
+
+            sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: I = J.one().to_matrix()
+            sage: J.trace_inner_product(I, -I)
+            -2
+
+        ::
+
+            sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: I = J.one().to_matrix()
+            sage: J.trace_inner_product(I, -I)
+            -2
 
         """
-        # This does in fact compute the real part of the trace.
-        # If we compute the trace of e.g. a complex matrix M,
-        # then we do so by adding up its diagonal entries --
-        # call them z_1 through z_n. The real embedding of z_1
-        # will be a 2-by-2 REAL matrix [a, b; -b, a] whose trace
-        # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
-        return (X*Y).trace()/cls.dimension_over_reals()
+        tr = (X*Y).trace()
+        if hasattr(tr, 'coefficient'):
+            # Works for octonions, and has to come first because they
+            # also have a "real()" method that doesn't return an
+            # element of the scalar ring.
+            return tr.coefficient(0)
+        elif hasattr(tr, 'coefficient_tuple'):
+            # Works for quaternions.
+            return tr.coefficient_tuple()[0]
+
+        # Works for real and complex numbers.
+        return tr.real()
+
+
+    def __init__(self, matrix_space, **kwargs):
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
+        super().__init__(self._denormalized_basis(matrix_space),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=matrix_space.base_ring(),
+                         matrix_space=matrix_space,
+                         **kwargs)
+
+        self.rank.set_cache(matrix_space.nrows())
+        self.one.set_cache( self(matrix_space.one()) )
+
+class RealSymmetricEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1866,16 +2101,14 @@ class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
 
     The dimension of this algebra is `(n^2 + n) / 2`::
 
-        sage: set_random_seed()
-        sage: n_max = RealSymmetricEJA._max_random_instance_size()
-        sage: n = ZZ.random_element(1, n_max)
+        sage: d = RealSymmetricEJA._max_random_instance_dimension()
+        sage: n = RealSymmetricEJA._max_random_instance_size(d)
         sage: J = RealSymmetricEJA(n)
         sage: J.dimension() == (n^2 + n)/2
         True
 
     The Jordan multiplication is what we think it is::
 
-        sage: set_random_seed()
         sage: J = RealSymmetricEJA.random_instance()
         sage: x,y = J.random_elements(2)
         sage: actual = (x*y).to_matrix()
@@ -1898,526 +2131,126 @@ class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
         Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
 
     """
-    @classmethod
-    def _denormalized_basis(cls, n, field):
-        """
-        Return a basis for the space of real symmetric n-by-n matrices.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import RealSymmetricEJA
-
-        TESTS::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(1,5)
-            sage: B = RealSymmetricEJA._denormalized_basis(n,ZZ)
-            sage: all( M.is_symmetric() for M in  B)
-            True
-
-        """
-        # The basis of symmetric matrices, as matrices, in their R^(n-by-n)
-        # coordinates.
-        S = []
-        for i in range(n):
-            for j in range(i+1):
-                Eij = matrix(field, n, lambda k,l: k==i and l==j)
-                if i == j:
-                    Sij = Eij
-                else:
-                    Sij = Eij + Eij.transpose()
-                S.append(Sij)
-        return tuple(S)
-
-
     @staticmethod
-    def _max_random_instance_size():
-        return 4 # Dimension 10
+    def _max_random_instance_size(max_dimension):
+        # Obtained by solving d = (n^2 + n)/2.
+        # The ZZ-int-ZZ thing is just "floor."
+        return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/2 - 1/2))
 
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
         return cls(n, **kwargs)
 
     def __init__(self, n, field=AA, **kwargs):
-        # We know this is a valid EJA, but will double-check
-        # if the user passes check_axioms=True.
-        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+        A = MatrixSpace(field, n)
+        super().__init__(A, **kwargs)
 
-        associative = False
-        if n <= 1:
-            associative = True
+        from mjo.eja.eja_cache import real_symmetric_eja_coeffs
+        a = real_symmetric_eja_coeffs(self)
+        if a is not None:
+            self.rational_algebra()._charpoly_coefficients.set_cache(a)
 
-        super().__init__(self._denormalized_basis(n,field),
-                         self.jordan_product,
-                         self.trace_inner_product,
-                         field=field,
-                         associative=associative,
-                         **kwargs)
 
-        # TODO: this could be factored out somehow, but is left here
-        # because the MatrixEJA is not presently a subclass of the
-        # FDEJA class that defines rank() and one().
-        self.rank.set_cache(n)
-        idV = self.matrix_space().one()
-        self.one.set_cache(self(idV))
 
+class ComplexHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
+    """
+    The rank-n simple EJA consisting of complex Hermitian n-by-n
+    matrices over the real numbers, the usual symmetric Jordan product,
+    and the real-part-of-trace inner product. It has dimension `n^2` over
+    the reals.
 
+    SETUP::
 
-class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
-    # A manual dictionary-cache for the complex_extension() method,
-    # since apparently @classmethods can't also be @cached_methods.
-    _complex_extension = {}
+        sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
 
-    @classmethod
-    def complex_extension(cls,field):
-        r"""
-        The complex field that we embed/unembed, as an extension
-        of the given ``field``.
-        """
-        if field in cls._complex_extension:
-            return cls._complex_extension[field]
-
-        # Sage doesn't know how to adjoin the complex "i" (the root of
-        # x^2 + 1) to a field in a general way. Here, we just enumerate
-        # all of the cases that I have cared to support so far.
-        if field is AA:
-            # Sage doesn't know how to embed AA into QQbar, i.e. how
-            # to adjoin sqrt(-1) to AA.
-            F = QQbar
-        elif not field.is_exact():
-            # RDF or RR
-            F = field.complex_field()
-        else:
-            # Works for QQ and... maybe some other fields.
-            R = PolynomialRing(field, 'z')
-            z = R.gen()
-            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+    EXAMPLES:
 
-        cls._complex_extension[field] = F
-        return F
+    In theory, our "field" can be any subfield of the reals, but we
+    can't use inexact real fields at the moment because SageMath
+    doesn't know how to convert their elements into complex numbers,
+    or even into algebraic reals::
 
-    @staticmethod
-    def dimension_over_reals():
-        return 2
+        sage: QQbar(RDF(1))
+        Traceback (most recent call last):
+        ...
+        TypeError: Illegal initializer for algebraic number
+        sage: AA(RR(1))
+        Traceback (most recent call last):
+        ...
+        TypeError: Illegal initializer for algebraic number
 
-    @classmethod
-    def real_embed(cls,M):
-        """
-        Embed the n-by-n complex matrix ``M`` into the space of real
-        matrices of size 2n-by-2n via the map the sends each entry `z = a +
-        bi` to the block matrix ``[[a,b],[-b,a]]``.
+    TESTS:
 
-        SETUP::
+    The dimension of this algebra is `n^2`::
 
-            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
+        sage: d = ComplexHermitianEJA._max_random_instance_dimension()
+        sage: n = ComplexHermitianEJA._max_random_instance_size(d)
+        sage: J = ComplexHermitianEJA(n)
+        sage: J.dimension() == n^2
+        True
 
-        EXAMPLES::
+    The Jordan multiplication is what we think it is::
 
-            sage: F = QuadraticField(-1, 'I')
-            sage: x1 = F(4 - 2*i)
-            sage: x2 = F(1 + 2*i)
-            sage: x3 = F(-i)
-            sage: x4 = F(6)
-            sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
-            sage: ComplexMatrixEJA.real_embed(M)
-            [ 4 -2| 1  2]
-            [ 2  4|-2  1]
-            [-----+-----]
-            [ 0 -1| 6  0]
-            [ 1  0| 0  6]
+        sage: J = ComplexHermitianEJA.random_instance()
+        sage: x,y = J.random_elements(2)
+        sage: actual = (x*y).to_matrix()
+        sage: X = x.to_matrix()
+        sage: Y = y.to_matrix()
+        sage: expected = (X*Y + Y*X)/2
+        sage: actual == expected
+        True
+        sage: J(expected) == x*y
+        True
 
-        TESTS:
+    We can change the generator prefix::
 
-        Embedding is a homomorphism (isomorphism, in fact)::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(3)
-            sage: F = QuadraticField(-1, 'I')
-            sage: X = random_matrix(F, n)
-            sage: Y = random_matrix(F, n)
-            sage: Xe = ComplexMatrixEJA.real_embed(X)
-            sage: Ye = ComplexMatrixEJA.real_embed(Y)
-            sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
-            sage: Xe*Ye == XYe
-            True
+        sage: ComplexHermitianEJA(2, prefix='z').gens()
+        (z0, z1, z2, z3)
 
-        """
-        super().real_embed(M)
-        n = M.nrows()
+    We can construct the (trivial) algebra of rank zero::
 
-        # We don't need any adjoined elements...
-        field = M.base_ring().base_ring()
+        sage: ComplexHermitianEJA(0)
+        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
 
-        blocks = []
-        for z in M.list():
-            a = z.real()
-            b = z.imag()
-            blocks.append(matrix(field, 2, [ [ a, b],
-                                             [-b, a] ]))
+    """
+    def __init__(self, n, field=AA, **kwargs):
+        from mjo.hurwitz import ComplexMatrixAlgebra
+        A = ComplexMatrixAlgebra(n, scalars=field)
+        super().__init__(A, **kwargs)
 
-        return matrix.block(field, n, blocks)
+        from mjo.eja.eja_cache import complex_hermitian_eja_coeffs
+        a = complex_hermitian_eja_coeffs(self)
+        if a is not None:
+            self.rational_algebra()._charpoly_coefficients.set_cache(a)
 
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
+        # Obtained by solving d = n^2.
+        # The ZZ-int-ZZ thing is just "floor."
+        return ZZ(int(ZZ(max_dimension).sqrt()))
 
     @classmethod
-    def real_unembed(cls,M):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
-        The inverse of _embed_complex_matrix().
+        Return a random instance of this type of algebra.
+        """
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
+        return cls(n, **kwargs)
 
-        SETUP::
 
-            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
-
-        EXAMPLES::
-
-            sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
-            ....:                 [-2,  1,  -4,  3],
-            ....:                 [ 9,  10, 11, 12],
-            ....:                 [-10, 9, -12, 11] ])
-            sage: ComplexMatrixEJA.real_unembed(A)
-            [  2*I + 1   4*I + 3]
-            [ 10*I + 9 12*I + 11]
-
-        TESTS:
-
-        Unembedding is the inverse of embedding::
-
-            sage: set_random_seed()
-            sage: F = QuadraticField(-1, 'I')
-            sage: M = random_matrix(F, 3)
-            sage: Me = ComplexMatrixEJA.real_embed(M)
-            sage: ComplexMatrixEJA.real_unembed(Me) == M
-            True
-
-        """
-        super().real_unembed(M)
-        n = ZZ(M.nrows())
-        d = cls.dimension_over_reals()
-        F = cls.complex_extension(M.base_ring())
-        i = F.gen()
-
-        # Go top-left to bottom-right (reading order), converting every
-        # 2-by-2 block we see to a single complex element.
-        elements = []
-        for k in range(n/d):
-            for j in range(n/d):
-                submat = M[d*k:d*k+d,d*j:d*j+d]
-                if submat[0,0] != submat[1,1]:
-                    raise ValueError('bad on-diagonal submatrix')
-                if submat[0,1] != -submat[1,0]:
-                    raise ValueError('bad off-diagonal submatrix')
-                z = submat[0,0] + submat[0,1]*i
-                elements.append(z)
-
-        return matrix(F, n/d, elements)
-
-
-class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
-    """
-    The rank-n simple EJA consisting of complex Hermitian n-by-n
-    matrices over the real numbers, the usual symmetric Jordan product,
-    and the real-part-of-trace inner product. It has dimension `n^2` over
-    the reals.
-
-    SETUP::
-
-        sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
-
-    EXAMPLES:
-
-    In theory, our "field" can be any subfield of the reals::
-
-        sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
-        Euclidean Jordan algebra of dimension 4 over Real Double Field
-        sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
-        Euclidean Jordan algebra of dimension 4 over Real Field with
-        53 bits of precision
-
-    TESTS:
-
-    The dimension of this algebra is `n^2`::
-
-        sage: set_random_seed()
-        sage: n_max = ComplexHermitianEJA._max_random_instance_size()
-        sage: n = ZZ.random_element(1, n_max)
-        sage: J = ComplexHermitianEJA(n)
-        sage: J.dimension() == n^2
-        True
-
-    The Jordan multiplication is what we think it is::
-
-        sage: set_random_seed()
-        sage: J = ComplexHermitianEJA.random_instance()
-        sage: x,y = J.random_elements(2)
-        sage: actual = (x*y).to_matrix()
-        sage: X = x.to_matrix()
-        sage: Y = y.to_matrix()
-        sage: expected = (X*Y + Y*X)/2
-        sage: actual == expected
-        True
-        sage: J(expected) == x*y
-        True
-
-    We can change the generator prefix::
-
-        sage: ComplexHermitianEJA(2, prefix='z').gens()
-        (z0, z1, z2, z3)
-
-    We can construct the (trivial) algebra of rank zero::
-
-        sage: ComplexHermitianEJA(0)
-        Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
-
-    """
-
-    @classmethod
-    def _denormalized_basis(cls, n, field):
-        """
-        Returns a basis for the space of complex Hermitian n-by-n matrices.
-
-        Why do we embed these? Basically, because all of numerical linear
-        algebra assumes that you're working with vectors consisting of `n`
-        entries from a field and scalars from the same field. There's no way
-        to tell SageMath that (for example) the vectors contain complex
-        numbers, while the scalar field is real.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
-
-        TESTS::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(1,5)
-            sage: B = ComplexHermitianEJA._denormalized_basis(n,ZZ)
-            sage: all( M.is_symmetric() for M in  B)
-            True
-
-        """
-        R = PolynomialRing(ZZ, 'z')
-        z = R.gen()
-        F = ZZ.extension(z**2 + 1, 'I')
-        I = F.gen(1)
-
-        # This is like the symmetric case, but we need to be careful:
-        #
-        #   * We want conjugate-symmetry, not just symmetry.
-        #   * The diagonal will (as a result) be real.
-        #
-        S = []
-        Eij = matrix.zero(F,n)
-        for i in range(n):
-            for j in range(i+1):
-                # "build" E_ij
-                Eij[i,j] = 1
-                if i == j:
-                    Sij = cls.real_embed(Eij)
-                    S.append(Sij)
-                else:
-                    # The second one has a minus because it's conjugated.
-                    Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
-                    Sij_real = cls.real_embed(Eij)
-                    S.append(Sij_real)
-                    # Eij = I*Eij - I*Eij.transpose()
-                    Eij[i,j] = I
-                    Eij[j,i] = -I
-                    Sij_imag = cls.real_embed(Eij)
-                    S.append(Sij_imag)
-                    Eij[j,i] = 0
-                # "erase" E_ij
-                Eij[i,j] = 0
-
-        # Since we embedded the entries, we can drop back to the
-        # desired real "field" instead of the extension "F".
-        return tuple( s.change_ring(field) for s in S )
-
-
-    def __init__(self, n, field=AA, **kwargs):
-        # We know this is a valid EJA, but will double-check
-        # if the user passes check_axioms=True.
-        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
-
-        associative = False
-        if n <= 1:
-            associative = True
-
-        super().__init__(self._denormalized_basis(n,field),
-                         self.jordan_product,
-                         self.trace_inner_product,
-                         field=field,
-                         associative=associative,
-                         **kwargs)
-        # TODO: this could be factored out somehow, but is left here
-        # because the MatrixEJA is not presently a subclass of the
-        # FDEJA class that defines rank() and one().
-        self.rank.set_cache(n)
-        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
-        self.one.set_cache(self(idV))
-
-    @staticmethod
-    def _max_random_instance_size():
-        return 3 # Dimension 9
-
-    @classmethod
-    def random_instance(cls, **kwargs):
-        """
-        Return a random instance of this type of algebra.
-        """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
-        return cls(n, **kwargs)
-
-class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
-
-    # A manual dictionary-cache for the quaternion_extension() method,
-    # since apparently @classmethods can't also be @cached_methods.
-    _quaternion_extension = {}
-
-    @classmethod
-    def quaternion_extension(cls,field):
-        r"""
-        The quaternion field that we embed/unembed, as an extension
-        of the given ``field``.
-        """
-        if field in cls._quaternion_extension:
-            return cls._quaternion_extension[field]
-
-        Q = QuaternionAlgebra(field,-1,-1)
-
-        cls._quaternion_extension[field] = Q
-        return Q
-
-    @staticmethod
-    def dimension_over_reals():
-        return 4
-
-    @classmethod
-    def real_embed(cls,M):
-        """
-        Embed the n-by-n quaternion matrix ``M`` into the space of real
-        matrices of size 4n-by-4n by first sending each quaternion entry `z
-        = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
-        c+di],[-c + di, a-bi]]`, and then embedding those into a real
-        matrix.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
-
-        EXAMPLES::
-
-            sage: Q = QuaternionAlgebra(QQ,-1,-1)
-            sage: i,j,k = Q.gens()
-            sage: x = 1 + 2*i + 3*j + 4*k
-            sage: M = matrix(Q, 1, [[x]])
-            sage: QuaternionMatrixEJA.real_embed(M)
-            [ 1  2  3  4]
-            [-2  1 -4  3]
-            [-3  4  1 -2]
-            [-4 -3  2  1]
-
-        Embedding is a homomorphism (isomorphism, in fact)::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(2)
-            sage: Q = QuaternionAlgebra(QQ,-1,-1)
-            sage: X = random_matrix(Q, n)
-            sage: Y = random_matrix(Q, n)
-            sage: Xe = QuaternionMatrixEJA.real_embed(X)
-            sage: Ye = QuaternionMatrixEJA.real_embed(Y)
-            sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
-            sage: Xe*Ye == XYe
-            True
-
-        """
-        super().real_embed(M)
-        quaternions = M.base_ring()
-        n = M.nrows()
-
-        F = QuadraticField(-1, 'I')
-        i = F.gen()
-
-        blocks = []
-        for z in M.list():
-            t = z.coefficient_tuple()
-            a = t[0]
-            b = t[1]
-            c = t[2]
-            d = t[3]
-            cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
-                                 [-c + d*i, a - b*i]])
-            realM = ComplexMatrixEJA.real_embed(cplxM)
-            blocks.append(realM)
-
-        # We should have real entries by now, so use the realest field
-        # we've got for the return value.
-        return matrix.block(quaternions.base_ring(), n, blocks)
-
-
-
-    @classmethod
-    def real_unembed(cls,M):
-        """
-        The inverse of _embed_quaternion_matrix().
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
-
-        EXAMPLES::
-
-            sage: M = matrix(QQ, [[ 1,  2,  3,  4],
-            ....:                 [-2,  1, -4,  3],
-            ....:                 [-3,  4,  1, -2],
-            ....:                 [-4, -3,  2,  1]])
-            sage: QuaternionMatrixEJA.real_unembed(M)
-            [1 + 2*i + 3*j + 4*k]
-
-        TESTS:
-
-        Unembedding is the inverse of embedding::
-
-            sage: set_random_seed()
-            sage: Q = QuaternionAlgebra(QQ, -1, -1)
-            sage: M = random_matrix(Q, 3)
-            sage: Me = QuaternionMatrixEJA.real_embed(M)
-            sage: QuaternionMatrixEJA.real_unembed(Me) == M
-            True
-
-        """
-        super().real_unembed(M)
-        n = ZZ(M.nrows())
-        d = cls.dimension_over_reals()
-
-        # Use the base ring of the matrix to ensure that its entries can be
-        # multiplied by elements of the quaternion algebra.
-        Q = cls.quaternion_extension(M.base_ring())
-        i,j,k = Q.gens()
-
-        # Go top-left to bottom-right (reading order), converting every
-        # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
-        # quaternion block.
-        elements = []
-        for l in range(n/d):
-            for m in range(n/d):
-                submat = ComplexMatrixEJA.real_unembed(
-                    M[d*l:d*l+d,d*m:d*m+d] )
-                if submat[0,0] != submat[1,1].conjugate():
-                    raise ValueError('bad on-diagonal submatrix')
-                if submat[0,1] != -submat[1,0].conjugate():
-                    raise ValueError('bad off-diagonal submatrix')
-                z  = submat[0,0].real()
-                z += submat[0,0].imag()*i
-                z += submat[0,1].real()*j
-                z += submat[0,1].imag()*k
-                elements.append(z)
-
-        return matrix(Q, n/d, elements)
-
-
-class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
+class QuaternionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
     r"""
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -2442,16 +2275,14 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
 
     The dimension of this algebra is `2*n^2 - n`::
 
-        sage: set_random_seed()
-        sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
-        sage: n = ZZ.random_element(1, n_max)
+        sage: d = QuaternionHermitianEJA._max_random_instance_dimension()
+        sage: n = QuaternionHermitianEJA._max_random_instance_size(d)
         sage: J = QuaternionHermitianEJA(n)
         sage: J.dimension() == 2*(n^2) - n
         True
 
     The Jordan multiplication is what we think it is::
 
-        sage: set_random_seed()
         sage: J = QuaternionHermitianEJA.random_instance()
         sage: x,y = J.random_elements(2)
         sage: actual = (x*y).to_matrix()
@@ -2474,119 +2305,154 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
         Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
 
     """
-    @classmethod
-    def _denormalized_basis(cls, n, field):
-        """
-        Returns a basis for the space of quaternion Hermitian n-by-n matrices.
-
-        Why do we embed these? Basically, because all of numerical
-        linear algebra assumes that you're working with vectors consisting
-        of `n` entries from a field and scalars from the same field. There's
-        no way to tell SageMath that (for example) the vectors contain
-        complex numbers, while the scalar field is real.
-
-        SETUP::
+    def __init__(self, n, field=AA, **kwargs):
+        from mjo.hurwitz import QuaternionMatrixAlgebra
+        A = QuaternionMatrixAlgebra(n, scalars=field)
+        super().__init__(A, **kwargs)
 
-            sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
+        from mjo.eja.eja_cache import quaternion_hermitian_eja_coeffs
+        a = quaternion_hermitian_eja_coeffs(self)
+        if a is not None:
+            self.rational_algebra()._charpoly_coefficients.set_cache(a)
 
-        TESTS::
 
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(1,5)
-            sage: B = QuaternionHermitianEJA._denormalized_basis(n,ZZ)
-            sage: all( M.is_symmetric() for M in B )
-            True
 
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
+        r"""
+        The maximum rank of a random QuaternionHermitianEJA.
         """
-        Q = QuaternionAlgebra(QQ,-1,-1)
-        I,J,K = Q.gens()
+        # Obtained by solving d = 2n^2 - n.
+        # The ZZ-int-ZZ thing is just "floor."
+        return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
 
-        # This is like the symmetric case, but we need to be careful:
-        #
-        #   * We want conjugate-symmetry, not just symmetry.
-        #   * The diagonal will (as a result) be real.
-        #
-        S = []
-        Eij = matrix.zero(Q,n)
-        for i in range(n):
-            for j in range(i+1):
-                # "build" E_ij
-                Eij[i,j] = 1
-                if i == j:
-                    Sij = cls.real_embed(Eij)
-                    S.append(Sij)
-                else:
-                    # The second, third, and fourth ones have a minus
-                    # because they're conjugated.
-                    # Eij = Eij + Eij.transpose()
-                    Eij[j,i] = 1
-                    Sij_real = cls.real_embed(Eij)
-                    S.append(Sij_real)
-                    # Eij = I*(Eij - Eij.transpose())
-                    Eij[i,j] = I
-                    Eij[j,i] = -I
-                    Sij_I = cls.real_embed(Eij)
-                    S.append(Sij_I)
-                    # Eij = J*(Eij - Eij.transpose())
-                    Eij[i,j] = J
-                    Eij[j,i] = -J
-                    Sij_J = cls.real_embed(Eij)
-                    S.append(Sij_J)
-                    # Eij = K*(Eij - Eij.transpose())
-                    Eij[i,j] = K
-                    Eij[j,i] = -K
-                    Sij_K = cls.real_embed(Eij)
-                    S.append(Sij_K)
-                    Eij[j,i] = 0
-                # "erase" E_ij
-                Eij[i,j] = 0
-
-        # Since we embedded the entries, we can drop back to the
-        # desired real "field" instead of the quaternion algebra "Q".
-        return tuple( s.change_ring(field) for s in S )
+    @classmethod
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
+        return cls(n, **kwargs)
 
+class OctonionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
+    r"""
+    SETUP::
 
-    def __init__(self, n, field=AA, **kwargs):
-        # We know this is a valid EJA, but will double-check
-        # if the user passes check_axioms=True.
-        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+        sage: from mjo.eja.eja_algebra import (EJA,
+        ....:                                  OctonionHermitianEJA)
+        sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
 
-        associative = False
-        if n <= 1:
-            associative = True
+    EXAMPLES:
 
-        super().__init__(self._denormalized_basis(n,field),
-                         self.jordan_product,
-                         self.trace_inner_product,
-                         field=field,
-                         associative=associative,
-                         **kwargs)
+    The 3-by-3 algebra satisfies the axioms of an EJA::
+
+        sage: OctonionHermitianEJA(3,                    # long time
+        ....:                      field=QQ,             # long time
+        ....:                      orthonormalize=False, # long time
+        ....:                      check_axioms=True)    # long time
+        Euclidean Jordan algebra of dimension 27 over Rational Field
+
+    After a change-of-basis, the 2-by-2 algebra has the same
+    multiplication table as the ten-dimensional Jordan spin algebra::
+
+        sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
+        sage: b = OctonionHermitianEJA._denormalized_basis(A)
+        sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
+        sage: jp = OctonionHermitianEJA.jordan_product
+        sage: ip = OctonionHermitianEJA.trace_inner_product
+        sage: J = EJA(basis,
+        ....:                          jp,
+        ....:                          ip,
+        ....:                          field=QQ,
+        ....:                          orthonormalize=False)
+        sage: J.multiplication_table()
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | *  || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
+        +====++====+====+====+====+====+====+====+====+====+====+
+        | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b1 || b1 | b0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b2 || b2 | 0  | b0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b3 || b3 | 0  | 0  | b0 | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b4 || b4 | 0  | 0  | 0  | b0 | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b5 || b5 | 0  | 0  | 0  | 0  | b0 | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b6 || b6 | 0  | 0  | 0  | 0  | 0  | b0 | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b7 || b7 | 0  | 0  | 0  | 0  | 0  | 0  | b0 | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b8 || b8 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | b0 | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b9 || b9 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | b0 |
+        +----++----+----+----+----+----+----+----+----+----+----+
 
-        # TODO: this could be factored out somehow, but is left here
-        # because the MatrixEJA is not presently a subclass of the
-        # FDEJA class that defines rank() and one().
-        self.rank.set_cache(n)
-        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
-        self.one.set_cache(self(idV))
+    TESTS:
 
+    We can actually construct the 27-dimensional Albert algebra,
+    and we get the right unit element if we recompute it::
+
+        sage: J = OctonionHermitianEJA(3,                    # long time
+        ....:                          field=QQ,             # long time
+        ....:                          orthonormalize=False) # long time
+        sage: J.one.clear_cache()                            # long time
+        sage: J.one()                                        # long time
+        b0 + b9 + b26
+        sage: J.one().to_matrix()                            # long time
+        +----+----+----+
+        | e0 | 0  | 0  |
+        +----+----+----+
+        | 0  | e0 | 0  |
+        +----+----+----+
+        | 0  | 0  | e0 |
+        +----+----+----+
+
+    The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
+    spin algebra, but just to be sure, we recompute its rank::
+
+        sage: J = OctonionHermitianEJA(2,                    # long time
+        ....:                          field=QQ,             # long time
+        ....:                          orthonormalize=False) # long time
+        sage: J.rank.clear_cache()                           # long time
+        sage: J.rank()                                       # long time
+        2
 
+    """
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_size(max_dimension):
         r"""
-        The maximum rank of a random QuaternionHermitianEJA.
-        """
-        return 2 # Dimension 6
+        The maximum rank of a random OctonionHermitianEJA.
+        """
+        # There's certainly a formula for this, but with only four
+        # cases to worry about, I'm not that motivated to derive it.
+        if max_dimension >= 27:
+            return 3
+        elif max_dimension >= 10:
+            return 2
+        elif max_dimension >= 1:
+            return 1
+        else:
+            return 0
 
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
         return cls(n, **kwargs)
 
-class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
-
     def __init__(self, n, field=AA, **kwargs):
         if n > 3:
             # Otherwise we don't get an EJA.
@@ -2596,65 +2462,46 @@ class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
         # if the user passes check_axioms=True.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-        super().__init__(self._denormalized_basis(n,field),
-                         self.jordan_product,
-                         self.trace_inner_product,
-                         **kwargs)
+        from mjo.hurwitz import OctonionMatrixAlgebra
+        A = OctonionMatrixAlgebra(n, scalars=field)
+        super().__init__(A, **kwargs)
 
-        # TODO: this could be factored out somehow, but is left here
-        # because the MatrixEJA is not presently a subclass of the
-        # FDEJA class that defines rank() and one().
-        self.rank.set_cache(n)
-        idV = self.matrix_space().one()
-        self.one.set_cache(self(idV))
+        from mjo.eja.eja_cache import octonion_hermitian_eja_coeffs
+        a = octonion_hermitian_eja_coeffs(self)
+        if a is not None:
+            self.rational_algebra()._charpoly_coefficients.set_cache(a)
 
 
-    @classmethod
-    def _denormalized_basis(cls, n, field):
-        """
-        Returns a basis for the space of octonion Hermitian n-by-n
-        matrices.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import OctonionHermitianEJA
+class AlbertEJA(OctonionHermitianEJA):
+    r"""
+    The Albert algebra is the algebra of three-by-three Hermitian
+    matrices whose entries are octonions.
 
-        EXAMPLES::
+    SETUP::
 
-            sage: B = OctonionHermitianEJA._denormalized_basis(3)
-            sage: all( M.is_hermitian() for M in B )
-            True
-            sage: len(B)
-            27
+        sage: from mjo.eja.eja_algebra import AlbertEJA
 
-        """
-        from mjo.octonions import OctonionMatrixAlgebra
-        MS = OctonionMatrixAlgebra(n, scalars=field)
-        es = MS.entry_algebra().gens()
+    EXAMPLES::
 
-        basis = []
-        for i in range(n):
-            for j in range(i+1):
-                if i == j:
-                    E_ii = MS.monomial( (i,j,es[0]) )
-                    basis.append(E_ii)
-                else:
-                    for e in es:
-                        E_ij  = MS.monomial( (i,j,e)             )
-                        E_ij += MS.monomial( (j,i,e.conjugate()) )
-                        basis.append(E_ij)
+        sage: AlbertEJA(field=QQ, orthonormalize=False)
+        Euclidean Jordan algebra of dimension 27 over Rational Field
+        sage: AlbertEJA() # long time
+        Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
 
-        return tuple( basis )
+    """
+    def __init__(self, *args, **kwargs):
+        super().__init__(3, *args, **kwargs)
 
 
-class HadamardEJA(ConcreteEJA):
+class HadamardEJA(RationalBasisEJA, ConcreteEJA):
     """
-    Return the Euclidean Jordan Algebra corresponding to the set
-    `R^n` under the Hadamard product.
+    Return the Euclidean Jordan algebra on `R^n` with the Hadamard
+    (pointwise real-number multiplication) Jordan product and the
+    usual inner-product.
 
-    Note: this is nothing more than the Cartesian product of ``n``
-    copies of the spin algebra. Once Cartesian product algebras
-    are implemented, this can go.
+    This is nothing more than the Cartesian product of ``n`` copies of
+    the one-dimensional Jordan spin algebra, and is the most common
+    example of a non-simple Euclidean Jordan algebra.
 
     SETUP::
 
@@ -2685,16 +2532,16 @@ class HadamardEJA(ConcreteEJA):
 
         sage: HadamardEJA(3, prefix='r').gens()
         (r0, r1, r2)
-
     """
     def __init__(self, n, field=AA, **kwargs):
+        MS = MatrixSpace(field, n, 1)
+
         if n == 0:
             jordan_product = lambda x,y: x
             inner_product = lambda x,y: x
         else:
             def jordan_product(x,y):
-                P = x.parent()
-                return P( xi*yi for (xi,yi) in zip(x,y) )
+                return MS( xi*yi for (xi,yi) in zip(x,y) )
 
             def inner_product(x,y):
                 return (x.T*y)[0,0]
@@ -2708,38 +2555,47 @@ class HadamardEJA(ConcreteEJA):
         if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-        column_basis = tuple( b.column()
-                              for b in FreeModule(field, n).basis() )
+        column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
         super().__init__(column_basis,
                          jordan_product,
                          inner_product,
                          field=field,
+                         matrix_space=MS,
                          associative=True,
                          **kwargs)
         self.rank.set_cache(n)
 
-        if n == 0:
-            self.one.set_cache( self.zero() )
-        else:
-            self.one.set_cache( sum(self.gens()) )
+        self.one.set_cache( self.sum(self.gens()) )
 
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_dimension():
         r"""
-        The maximum dimension of a random HadamardEJA.
+        There's no reason to go higher than five here. That's
+        enough to get the point across.
         """
         return 5
 
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
+        r"""
+        The maximum size (=dimension) of a random HadamardEJA.
+        """
+        return max_dimension
+
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
         return cls(n, **kwargs)
 
 
-class BilinearFormEJA(ConcreteEJA):
+class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the half-trace inner product and jordan product ``x*y =
@@ -2799,7 +2655,6 @@ class BilinearFormEJA(ConcreteEJA):
     matrix.  We opt not to orthonormalize the basis, because if we
     did, we would have to normalize the `s_{i}` in a similar manner::
 
-        sage: set_random_seed()
         sage: n = ZZ.random_element(5)
         sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
         sage: B11 = matrix.identity(QQ,1)
@@ -2835,22 +2690,22 @@ class BilinearFormEJA(ConcreteEJA):
         # verify things, we'll skip the rest of the checks.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
+        n = B.nrows()
+        MS = MatrixSpace(field, n, 1)
+
         def inner_product(x,y):
             return (y.T*B*x)[0,0]
 
         def jordan_product(x,y):
-            P = x.parent()
             x0 = x[0,0]
             xbar = x[1:,0]
             y0 = y[0,0]
             ybar = y[1:,0]
             z0 = inner_product(y,x)
             zbar = y0*xbar + x0*ybar
-            return P([z0] + zbar.list())
+            return MS([z0] + zbar.list())
 
-        n = B.nrows()
-        column_basis = tuple( b.column()
-                              for b in FreeModule(field, n).basis() )
+        column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
 
         # TODO: I haven't actually checked this, but it seems legit.
         associative = False
@@ -2861,6 +2716,7 @@ class BilinearFormEJA(ConcreteEJA):
                          jordan_product,
                          inner_product,
                          field=field,
+                         matrix_space=MS,
                          associative=associative,
                          **kwargs)
 
@@ -2868,25 +2724,37 @@ class BilinearFormEJA(ConcreteEJA):
         # one-dimensional ambient space (because the rank is bounded
         # by the ambient dimension).
         self.rank.set_cache(min(n,2))
-
         if n == 0:
             self.one.set_cache( self.zero() )
         else:
             self.one.set_cache( self.monomial(0) )
 
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_dimension():
         r"""
-        The maximum dimension of a random BilinearFormEJA.
+        There's no reason to go higher than five here. That's
+        enough to get the point across.
         """
         return 5
 
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
+        r"""
+        The maximum size (=dimension) of a random BilinearFormEJA.
+        """
+        return max_dimension
+
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
         Return a random instance of this algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
+
         if n.is_zero():
             B = matrix.identity(ZZ, n)
             return cls(B, **kwargs)
@@ -2897,6 +2765,7 @@ class BilinearFormEJA(ConcreteEJA):
         alpha = ZZ.zero()
         while alpha.is_zero():
             alpha = ZZ.random_element().abs()
+
         B22 = M.transpose()*M + alpha*I
 
         from sage.matrix.special import block_matrix
@@ -2947,7 +2816,6 @@ class JordanSpinEJA(BilinearFormEJA):
 
         Ensure that we have the usual inner product on `R^n`::
 
-            sage: set_random_seed()
             sage: J = JordanSpinEJA.random_instance()
             sage: x,y = J.random_elements(2)
             sage: actual = x.inner_product(y)
@@ -2969,25 +2837,22 @@ class JordanSpinEJA(BilinearFormEJA):
         # can pass in a field!
         super().__init__(B, *args, **kwargs)
 
-    @staticmethod
-    def _max_random_instance_size():
-        r"""
-        The maximum dimension of a random JordanSpinEJA.
-        """
-        return 5
-
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
         Return a random instance of this type of algebra.
 
         Needed here to override the implementation for ``BilinearFormEJA``.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
         return cls(n, **kwargs)
 
 
-class TrivialEJA(ConcreteEJA):
+class TrivialEJA(RationalBasisEJA, ConcreteEJA):
     """
     The trivial Euclidean Jordan algebra consisting of only a zero element.
 
@@ -3016,10 +2881,11 @@ class TrivialEJA(ConcreteEJA):
         0
 
     """
-    def __init__(self, **kwargs):
+    def __init__(self, field=AA, **kwargs):
         jordan_product = lambda x,y: x
-        inner_product = lambda x,y: 0
+        inner_product = lambda x,y: field.zero()
         basis = ()
+        MS = MatrixSpace(field,0)
 
         # New defaults for keyword arguments
         if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
@@ -3029,6 +2895,8 @@ class TrivialEJA(ConcreteEJA):
                          jordan_product,
                          inner_product,
                          associative=True,
+                         field=field,
+                         matrix_space=MS,
                          **kwargs)
 
         # The rank is zero using my definition, namely the dimension of the
@@ -3037,13 +2905,16 @@ class TrivialEJA(ConcreteEJA):
         self.one.set_cache( self.zero() )
 
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         # We don't take a "size" argument so the superclass method is
-        # inappropriate for us.
+        # inappropriate for us. The ``max_dimension`` argument is
+        # included so that if this method is called generically with a
+        # ``max_dimension=<whatever>`` argument, we don't try to pass
+        # it on to the algebra constructor.
         return cls(**kwargs)
 
 
-class CartesianProductEJA(FiniteDimensionalEJA):
+class CartesianProductEJA(EJA):
     r"""
     The external (orthogonal) direct sum of two or more Euclidean
     Jordan algebras. Every Euclidean Jordan algebra decomposes into an
@@ -3055,6 +2926,7 @@ class CartesianProductEJA(FiniteDimensionalEJA):
 
         sage: from mjo.eja.eja_algebra import (random_eja,
         ....:                                  CartesianProductEJA,
+        ....:                                  ComplexHermitianEJA,
         ....:                                  HadamardEJA,
         ....:                                  JordanSpinEJA,
         ....:                                  RealSymmetricEJA)
@@ -3064,7 +2936,6 @@ class CartesianProductEJA(FiniteDimensionalEJA):
     The Jordan product is inherited from our factors and implemented by
     our CombinatorialFreeModule Cartesian product superclass::
 
-        sage: set_random_seed()
         sage: J1 = HadamardEJA(2)
         sage: J2 = RealSymmetricEJA(2)
         sage: J = cartesian_product([J1,J2])
@@ -3166,6 +3037,28 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         | b2 || 0  | 0  | b2 |
         +----++----+----+----+
 
+    The "matrix space" of a Cartesian product always consists of
+    ordered pairs (or triples, or...) whose components are the
+    matrix spaces of its factors::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.matrix_space()
+            The Cartesian product of (Full MatrixSpace of 2 by 1 dense
+            matrices over Algebraic Real Field, Module of 2 by 2 matrices
+            with entries in Algebraic Field over the scalar ring Algebraic
+            Real Field)
+            sage: J.one().to_matrix()[0]
+            [1]
+            [1]
+            sage: J.one().to_matrix()[1]
+            +---+---+
+            | 1 | 0 |
+            +---+---+
+            | 0 | 1 |
+            +---+---+
+
     TESTS:
 
     All factors must share the same base field::
@@ -3179,7 +3072,6 @@ class CartesianProductEJA(FiniteDimensionalEJA):
 
     The cached unit element is the same one that would be computed::
 
-        sage: set_random_seed()              # long time
         sage: J1 = random_eja()              # long time
         sage: J2 = random_eja()              # long time
         sage: J = cartesian_product([J1,J2]) # long time
@@ -3188,11 +3080,8 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         sage: expected = J.one()             # long time
         sage: actual == expected             # long time
         True
-
     """
-    Element = FiniteDimensionalEJAElement
-
-
+    Element = CartesianProductEJAElement
     def __init__(self, factors, **kwargs):
         m = len(factors)
         if m == 0:
@@ -3204,52 +3093,125 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         if not all( J.base_ring() == field for J in factors ):
             raise ValueError("all factors must share the same base field")
 
+        # Figure out the category to use.
         associative = all( f.is_associative() for f in factors )
-
-        MS = self.matrix_space()
-        basis = []
-        zero = MS.zero()
+        category = EuclideanJordanAlgebras(field)
+        if associative: category = category.Associative()
+        category = category.join([category, category.CartesianProducts()])
+
+        # Compute my matrix space.  We don't simply use the
+        # ``cartesian_product()`` functor here because it acts
+        # differently on SageMath MatrixSpaces and our custom
+        # MatrixAlgebras, which are CombinatorialFreeModules. We
+        # always want the result to be represented (and indexed) as an
+        # ordered tuple. This category isn't perfect, but is good
+        # enough for what we need to do.
+        MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
+        MS_cat = MS_cat.Unital().CartesianProducts()
+        MS_factors = tuple( J.matrix_space() for J in factors )
+        from sage.sets.cartesian_product import CartesianProduct
+        self._matrix_space = CartesianProduct(MS_factors, MS_cat)
+
+        self._matrix_basis = []
+        zero = self._matrix_space.zero()
         for i in range(m):
             for b in factors[i].matrix_basis():
                 z = list(zero)
                 z[i] = b
-                basis.append(z)
+                self._matrix_basis.append(z)
 
-        basis = tuple( MS(b) for b in basis )
+        self._matrix_basis = tuple( self._matrix_space(b)
+                                    for b in self._matrix_basis )
+        n = len(self._matrix_basis)
 
-        # Define jordan/inner products that operate on that matrix_basis.
-        def jordan_product(x,y):
-            return MS(tuple(
-                (factors[i](x[i])*factors[i](y[i])).to_matrix()
-                for i in range(m)
-            ))
-
-        def inner_product(x, y):
-            return sum(
-                factors[i](x[i]).inner_product(factors[i](y[i]))
-                for i in range(m)
-            )
+        # We already have what we need for the super-superclass constructor.
+        CombinatorialFreeModule.__init__(self,
+                                         field,
+                                         range(n),
+                                         prefix="b",
+                                         category=category,
+                                         bracket=False)
 
-        # There's no need to check the field since it already came
-        # from an EJA. Likewise the axioms are guaranteed to be
-        # satisfied, unless the guy writing this class sucks.
-        #
-        # If you want the basis to be orthonormalized, orthonormalize
-        # the factors.
-        FiniteDimensionalEJA.__init__(self,
-                                      basis,
-                                      jordan_product,
-                                      inner_product,
-                                      field=field,
-                                      orthonormalize=False,
-                                      associative=associative,
-                                      cartesian_product=True,
-                                      check_field=False,
-                                      check_axioms=False)
+        # Now create the vector space for the algebra, which will have
+        # its own set of non-ambient coordinates (in terms of the
+        # supplied basis).
+        degree = sum( f._matrix_span.ambient_vector_space().degree()
+                      for f in factors )
+        V = VectorSpace(field, degree)
+        vector_basis = tuple( V(_all2list(b)) for b in self._matrix_basis )
+
+        # Save the span of our matrix basis (when written out as long
+        # vectors) because otherwise we'll have to reconstruct it
+        # every time we want to coerce a matrix into the algebra.
+        self._matrix_span = V.span_of_basis( vector_basis, check=False)
+
+        # Since we don't (re)orthonormalize the basis, the FDEJA
+        # constructor is going to set self._deortho_matrix to the
+        # identity matrix. Here we set it to the correct value using
+        # the deortho matrices from our factors.
+        self._deortho_matrix = matrix.block_diagonal(
+            [J._deortho_matrix for J in factors]
+        )
+
+        self._inner_product_matrix = matrix.block_diagonal(
+            [J._inner_product_matrix for J in factors]
+        )
+        self._inner_product_matrix._cache = {'hermitian': True}
+        self._inner_product_matrix.set_immutable()
+
+        # Building the multiplication table is a bit more tricky
+        # because we have to embed the entries of the factors'
+        # multiplication tables into the product EJA.
+        zed = self.zero()
+        self._multiplication_table = [ [zed for j in range(i+1)]
+                                       for i in range(n) ]
+
+        # Keep track of an offset that tallies the dimensions of all
+        # previous factors. If the second factor is dim=2 and if the
+        # first one is dim=3, then we want to skip the first 3x3 block
+        # when copying the multiplication table for the second factor.
+        offset = 0
+        for f in range(m):
+            phi_f = self.cartesian_embedding(f)
+            factor_dim = factors[f].dimension()
+            for i in range(factor_dim):
+                for j in range(i+1):
+                    f_ij = factors[f]._multiplication_table[i][j]
+                    e = phi_f(f_ij)
+                    self._multiplication_table[offset+i][offset+j] = e
+            offset += factor_dim
 
+        self.rank.set_cache(sum(J.rank() for J in factors))
         ones = tuple(J.one().to_matrix() for J in factors)
         self.one.set_cache(self(ones))
-        self.rank.set_cache(sum(J.rank() for J in factors))
+
+    def _sets_keys(self):
+        r"""
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  RealSymmetricEJA)
+
+        TESTS:
+
+        The superclass uses ``_sets_keys()`` to implement its
+        ``cartesian_factors()`` method::
+
+            sage: J1 = RealSymmetricEJA(2,
+            ....:                       field=QQ,
+            ....:                       orthonormalize=False,
+            ....:                       prefix="a")
+            sage: J2 = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J = cartesian_product([J1,J2])
+            sage: x = sum(i*J.gens()[i] for i in range(len(J.gens())))
+            sage: x.cartesian_factors()
+            (a1 + 2*a2, 3*b0 + 4*b1 + 5*b2 + 6*b3)
+
+        """
+        # Copy/pasted from CombinatorialFreeModule_CartesianProduct,
+        # but returning a tuple instead of a list.
+        return tuple(range(len(self.cartesian_factors())))
 
     def cartesian_factors(self):
         # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
@@ -3267,30 +3229,6 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         return cartesian_product.symbol.join("%s" % factor
                                              for factor in self._sets)
 
-    def matrix_space(self):
-        r"""
-        Return the space that our matrix basis lives in as a Cartesian
-        product.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  RealSymmetricEJA)
-
-        EXAMPLES::
-
-            sage: J1 = HadamardEJA(1)
-            sage: J2 = RealSymmetricEJA(2)
-            sage: J = cartesian_product([J1,J2])
-            sage: J.matrix_space()
-            The Cartesian product of (Full MatrixSpace of 1 by 1 dense
-            matrices over Algebraic Real Field, Full MatrixSpace of 2
-            by 2 dense matrices over Algebraic Real Field)
-
-        """
-        from sage.categories.cartesian_product import cartesian_product
-        return cartesian_product( [J.matrix_space()
-                                   for J in self.cartesian_factors()] )
 
     @cached_method
     def cartesian_projection(self, i):
@@ -3352,7 +3290,6 @@ class CartesianProductEJA(FiniteDimensionalEJA):
 
         The answer never changes::
 
-            sage: set_random_seed()
             sage: J1 = random_eja()
             sage: J2 = random_eja()
             sage: J = cartesian_product([J1,J2])
@@ -3368,7 +3305,7 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
                                    codomain=Ji)
 
-        return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
+        return EJAOperator(self,Ji,Pi.matrix())
 
     @cached_method
     def cartesian_embedding(self, i):
@@ -3442,7 +3379,6 @@ class CartesianProductEJA(FiniteDimensionalEJA):
 
         The answer never changes::
 
-            sage: set_random_seed()
             sage: J1 = random_eja()
             sage: J2 = random_eja()
             sage: J = cartesian_product([J1,J2])
@@ -3455,7 +3391,6 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         produce the identity map, and mismatching them should produce
         the zero map::
 
-            sage: set_random_seed()
             sage: J1 = random_eja()
             sage: J2 = random_eja()
             sage: J = cartesian_product([J1,J2])
@@ -3478,11 +3413,39 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         Ji = self.cartesian_factor(i)
         Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
                                  codomain=self)
-        return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
+        return EJAOperator(Ji,self,Ei.matrix())
+
+
+    def subalgebra(self, basis, **kwargs):
+        r"""
+        Create a subalgebra of this algebra from the given basis.
+
+        Only overridden to allow us to use a special Cartesian product
+        subalgebra class.
+
+        SETUP::
 
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  QuaternionHermitianEJA)
+
+        EXAMPLES:
+
+        Subalgebras of Cartesian product EJAs have a different class
+        than those of non-Cartesian-product EJAs::
+
+            sage: J1 = HadamardEJA(2,field=QQ,orthonormalize=False)
+            sage: J2 = QuaternionHermitianEJA(0,field=QQ,orthonormalize=False)
+            sage: J = cartesian_product([J1,J2])
+            sage: K1 = J1.subalgebra((J1.one(),), orthonormalize=False)
+            sage: K = J.subalgebra((J.one(),), orthonormalize=False)
+            sage: K1.__class__ is K.__class__
+            False
 
+        """
+        from mjo.eja.eja_subalgebra import CartesianProductEJASubalgebra
+        return CartesianProductEJASubalgebra(self, basis, **kwargs)
 
-FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
+EJA.CartesianProduct = CartesianProductEJA
 
 class RationalBasisCartesianProductEJA(CartesianProductEJA,
                                        RationalBasisEJA):
@@ -3492,7 +3455,9 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA,
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+        sage: from mjo.eja.eja_algebra import (EJA,
+        ....:                                  HadamardEJA,
+        ....:                                  JordanSpinEJA,
         ....:                                  RealSymmetricEJA)
 
     EXAMPLES:
@@ -3509,28 +3474,308 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA,
         sage: J.rank()
         5
 
+    TESTS:
+
+    The ``cartesian_product()`` function only uses the first factor to
+    decide where the result will live; thus we have to be careful to
+    check that all factors do indeed have a ``rational_algebra()`` method
+    before we construct an algebra that claims to have a rational basis::
+
+        sage: J1 = HadamardEJA(2)
+        sage: jp = lambda X,Y: X*Y
+        sage: ip = lambda X,Y: X[0,0]*Y[0,0]
+        sage: b1 = matrix(QQ, [[1]])
+        sage: J2 = EJA((b1,), jp, ip)
+        sage: cartesian_product([J2,J1]) # factor one not RationalBasisEJA
+        Euclidean Jordan algebra of dimension 1 over Algebraic Real
+        Field (+) Euclidean Jordan algebra of dimension 2 over Algebraic
+        Real Field
+        sage: cartesian_product([J1,J2]) # factor one is RationalBasisEJA
+        Traceback (most recent call last):
+        ...
+        ValueError: factor not a RationalBasisEJA
+
     """
     def __init__(self, algebras, **kwargs):
+        if not all( hasattr(r, "rational_algebra") for r in algebras ):
+            raise ValueError("factor not a RationalBasisEJA")
+
         CartesianProductEJA.__init__(self, algebras, **kwargs)
 
-        self._rational_algebra = None
-        if self.vector_space().base_field() is not QQ:
-            self._rational_algebra = cartesian_product([
-                r._rational_algebra for r in algebras
-            ])
+    @cached_method
+    def rational_algebra(self):
+        if self.base_ring() is QQ:
+            return self
+
+        return cartesian_product([
+            r.rational_algebra() for r in self.cartesian_factors()
+        ])
 
 
 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
 
-def random_eja(*args, **kwargs):
-    J1 = ConcreteEJA.random_instance(*args, **kwargs)
+def random_eja(max_dimension=None, *args, **kwargs):
+    r"""
 
-    # This might make Cartesian products appear roughly as often as
-    # any other ConcreteEJA.
-    if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
-        # Use random_eja() again so we can get more than two factors.
-        J2 = random_eja(*args, **kwargs)
-        J = cartesian_product([J1,J2])
-        return J
-    else:
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import random_eja
+
+    TESTS::
+
+        sage: n = ZZ.random_element(1,5)
+        sage: J = random_eja(max_dimension=n, field=QQ, orthonormalize=False)
+        sage: J.dimension() <= n
+        True
+
+    """
+    # Use the ConcreteEJA default as the total upper bound (regardless
+    # of any whether or not any individual factors set a lower limit).
+    if max_dimension is None:
+        max_dimension = ConcreteEJA._max_random_instance_dimension()
+    J1 = ConcreteEJA.random_instance(max_dimension, *args, **kwargs)
+
+
+    # Roll the dice to see if we attempt a Cartesian product.
+    dice_roll = ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1)
+    new_max_dimension = max_dimension - J1.dimension()
+    if new_max_dimension == 0 or dice_roll != 0:
+        # If it's already as big as we're willing to tolerate, just
+        # return it and don't worry about Cartesian products.
         return J1
+    else:
+        # Use random_eja() again so we can get more than two factors
+        # if the sub-call also Decides on a cartesian product.
+        J2 = random_eja(new_max_dimension, *args, **kwargs)
+        return cartesian_product([J1,J2])
+
+
+class ComplexSkewSymmetricEJA(RationalBasisEJA, ConcreteEJA):
+    r"""
+    The skew-symmetric EJA of order `2n` described in Faraut and
+    Koranyi's Exercise III.1.b. It has dimension `2n^2 - n`.
+
+    It is (not obviously) isomorphic to the QuaternionHermitianEJA of
+    order `n`, as can be inferred by comparing rank/dimension or
+    explicitly from their "characteristic polynomial of" functions,
+    which just so happen to align nicely.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (ComplexSkewSymmetricEJA,
+        ....:                                  QuaternionHermitianEJA)
+        sage: from mjo.eja.eja_operator import EJAOperator
+
+    EXAMPLES:
+
+    This EJA is isomorphic to the quaternions::
+
+        sage: J = ComplexSkewSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: K = QuaternionHermitianEJA(2, field=QQ, orthonormalize=False)
+        sage: jordan_isom_matrix = matrix.diagonal(QQ,[-1,1,1,1,1,-1])
+        sage: phi = EJAOperator(J,K,jordan_isom_matrix)
+        sage: all( phi(x*y) == phi(x)*phi(y)
+        ....:      for x in J.gens()
+        ....:      for y in J.gens() )
+        True
+        sage: x,y = J.random_elements(2)
+        sage: phi(x*y) == phi(x)*phi(y)
+        True
+
+    TESTS:
+
+    Random elements should satisfy the same conditions that the basis
+    elements do::
+
+        sage: K = ComplexSkewSymmetricEJA.random_instance(field=QQ,
+        ....:                                             orthonormalize=False)
+        sage: x,y = K.random_elements(2)
+        sage: z = x*y
+        sage: x = x.to_matrix()
+        sage: y = y.to_matrix()
+        sage: z = z.to_matrix()
+        sage: all( e.is_skew_symmetric() for e in (x,y,z) )
+        True
+        sage: J = -K.one().to_matrix()
+        sage: all( e*J == J*e.conjugate() for e in (x,y,z) )
+        True
+
+    The power law in Faraut & Koranyi's II.7.a is satisfied.
+    We're in a subalgebra of theirs, but powers are still
+    defined the same::
+
+        sage: K = ComplexSkewSymmetricEJA.random_instance(field=QQ,
+        ....:                                             orthonormalize=False)
+        sage: x = K.random_element()
+        sage: k = ZZ.random_element(5)
+        sage: actual = x^k
+        sage: J = -K.one().to_matrix()
+        sage: expected = K(-J*(J*x.to_matrix())^k)
+        sage: actual == expected
+        True
+
+    """
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
+        # Obtained by solving d = 2n^2 - n, which comes from noticing
+        # that, in 2x2 block form, any element of this algebra has a
+        # free skew-symmetric top-left block, a Hermitian top-right
+        # block, and two bottom blocks that are determined by the top.
+        # The ZZ-int-ZZ thing is just "floor."
+        return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
+
+    @classmethod
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        class_max_d = cls._max_random_instance_dimension()
+        if (max_dimension is None or max_dimension > class_max_d):
+            max_dimension = class_max_d
+        max_size = cls._max_random_instance_size(max_dimension)
+        n = ZZ.random_element(max_size + 1)
+        return cls(n, **kwargs)
+
+    @staticmethod
+    def _denormalized_basis(A):
+        """
+        SETUP::
+
+            sage: from mjo.hurwitz import ComplexMatrixAlgebra
+            sage: from mjo.eja.eja_algebra import ComplexSkewSymmetricEJA
+
+        TESTS:
+
+        The basis elements are all skew-Hermitian::
+
+            sage: d_max = ComplexSkewSymmetricEJA._max_random_instance_dimension()
+            sage: n_max = ComplexSkewSymmetricEJA._max_random_instance_size(d_max)
+            sage: n = ZZ.random_element(n_max + 1)
+            sage: A = ComplexMatrixAlgebra(2*n, scalars=QQ)
+            sage: B = ComplexSkewSymmetricEJA._denormalized_basis(A)
+            sage: all( M.is_skew_symmetric() for M in  B)
+            True
+
+        The basis elements ``b`` all satisfy ``b*J == J*b.conjugate()``,
+        as in the definition of the algebra::
+
+            sage: d_max = ComplexSkewSymmetricEJA._max_random_instance_dimension()
+            sage: n_max = ComplexSkewSymmetricEJA._max_random_instance_size(d_max)
+            sage: n = ZZ.random_element(n_max + 1)
+            sage: A = ComplexMatrixAlgebra(2*n, scalars=QQ)
+            sage: I_n = matrix.identity(ZZ, n)
+            sage: J = matrix.block(ZZ, 2, 2, (0, I_n, -I_n, 0), subdivide=False)
+            sage: J = A.from_list(J.rows())
+            sage: B = ComplexSkewSymmetricEJA._denormalized_basis(A)
+            sage: all( b*J == J*b.conjugate()  for b in B )
+            True
+
+        """
+        es = A.entry_algebra_gens()
+        gen = lambda A,m: A.monomial(m)
+
+        basis = []
+
+        # The size of the blocks. We're going to treat these thing as
+        # 2x2 block matrices,
+        #
+        #   [  x1        x2      ]
+        #   [ -x2-conj   x1-conj ]
+        #
+        # where x1 is skew-symmetric and x2 is Hermitian.
+        #
+        m = A.nrows()/2
+
+        # We only loop through the top half of the matrix, because the
+        # bottom can be constructed from the top.
+        for i in range(m):
+            # First do the top-left block, which is skew-symmetric.
+            # We can compute the bottom-right block in the process.
+            for j in range(i+1):
+                if i != j:
+                    # Skew-symmetry implies zeros for (i == j).
+                    for e in es:
+                        # Top-left block's entry.
+                        E_ij  = gen(A, (i,j,e))
+                        E_ij -= gen(A, (j,i,e))
+
+                        # Bottom-right block's entry.
+                        F_ij  = gen(A, (i+m,j+m,e)).conjugate()
+                        F_ij -= gen(A, (j+m,i+m,e)).conjugate()
+
+                        basis.append(E_ij + F_ij)
+
+            # Now do the top-right block, which is Hermitian, and compute
+            # the bottom-left block along the way.
+            for j in range(m,i+m+1):
+                if (i+m) == j:
+                    # Hermitian matrices have real diagonal entries.
+                    # Top-right block's entry.
+                    E_ii = gen(A, (i,j,es[0]))
+
+                    # Bottom-left block's entry. Don't conjugate
+                    # 'cause it's real.
+                    E_ii -= gen(A, (i+m,j-m,es[0]))
+                    basis.append(E_ii)
+                else:
+                    for e in es:
+                        # Top-right block's entry. BEWARE! We're not
+                        # reflecting across the main diagonal as in
+                        # (i,j)~(j,i). We're only reflecting across
+                        # the diagonal for the top-right block.
+                        E_ij  = gen(A, (i,j,e))
+
+                        # Shift it back to non-offset coords, transpose,
+                        # conjugate, and put it back:
+                        #
+                        # (i,j) -> (i,j-m) -> (j-m, i) -> (j-m, i+m)
+                        E_ij += gen(A, (j-m,i+m,e)).conjugate()
+
+                        # Bottom-left's block's below-diagonal entry.
+                        # Just shift the top-right coords down m and
+                        # left m.
+                        F_ij  = -gen(A, (i+m,j-m,e)).conjugate()
+                        F_ij += -gen(A, (j,i,e)) # double-conjugate cancels
+
+                        basis.append(E_ij + F_ij)
+
+        return tuple( basis )
+
+    @staticmethod
+    @cached_method
+    def _J_matrix(matrix_space):
+        n = matrix_space.nrows() // 2
+        F = matrix_space.base_ring()
+        I_n = matrix.identity(F, n)
+        J = matrix.block(F, 2, 2, (0, I_n, -I_n, 0), subdivide=False)
+        return matrix_space.from_list(J.rows())
+
+    def J_matrix(self):
+        return ComplexSkewSymmetricEJA._J_matrix(self.matrix_space())
+
+    def __init__(self, n, field=AA, **kwargs):
+        # New code; always check the axioms.
+        #if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        from mjo.hurwitz import ComplexMatrixAlgebra
+        A = ComplexMatrixAlgebra(2*n, scalars=field)
+        J = ComplexSkewSymmetricEJA._J_matrix(A)
+
+        def jordan_product(X,Y):
+            return (X*J*Y + Y*J*X)/2
+
+        def inner_product(X,Y):
+            return (X.conjugate_transpose()*Y).trace().real()
+
+        super().__init__(self._denormalized_basis(A),
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         matrix_space=A,
+                         **kwargs)
+
+        # This algebra is conjectured (by me) to be isomorphic to
+        # the quaternion Hermitian EJA of size n, and the rank
+        # would follow from that.
+        #self.rank.set_cache(n)
+        self.one.set_cache( self(-J) )