]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add more examples.
[sage.d.git] / mjo / eja / eja_algebra.py
index d23ae2cf93e91bdd7998fe8852c3b936e577b222..d38ba87d37d3e6bdb01e23c7a9631bf98ee2c96c 100644 (file)
@@ -31,10 +31,9 @@ from sage.modules.free_module import FreeModule, VectorSpace
 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
                             PolynomialRing,
                             QuadraticField)
-from mjo.eja.eja_element import (CartesianProductEJAElement,
-                                 FiniteDimensionalEJAElement)
+from mjo.eja.eja_element import FiniteDimensionalEJAElement
 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
-from mjo.eja.eja_utils import _mat2vec
+from mjo.eja.eja_utils import _all2list, _mat2vec
 
 class FiniteDimensionalEJA(CombinatorialFreeModule):
     r"""
@@ -52,15 +51,15 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         `(a,b)` into column matrices `(a,b)^{T}` after converting
         `a` and `b` themselves.
 
-      - jordan_product -- function of two elements (in matrix form)
-        that returns their jordan product in this algebra; this will
-        be applied to ``basis`` to compute a multiplication table for
-        the algebra.
-
-      - inner_product -- function of two elements (in matrix form) that
-        returns their inner product. This will be applied to ``basis`` to
-        compute an inner-product table (basically a matrix) for this algebra.
+      - jordan_product -- function of two ``basis`` elements (in
+        matrix form) that returns their jordan product, also in matrix
+        form; this will be applied to ``basis`` to compute a
+        multiplication table for the algebra.
 
+      - inner_product -- function of two ``basis`` elements (in matrix
+        form) that returns their inner product. This will be applied
+        to ``basis`` to compute an inner-product table (basically a
+        matrix) for this algebra.
     """
     Element = FiniteDimensionalEJAElement
 
@@ -76,6 +75,18 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                  check_axioms=True,
                  prefix='e'):
 
+        # Keep track of whether or not the matrix basis consists of
+        # tuples, since we need special cases for them damned near
+        # everywhere.  This is INDEPENDENT of whether or not the
+        # algebra is a cartesian product, since a subalgebra of a
+        # cartesian product will have a basis of tuples, but will not
+        # in general itself be a cartesian product algebra.
+        self._matrix_basis_is_cartesian = False
+        n = len(basis)
+        if n > 0:
+            if hasattr(basis[0], 'cartesian_factors'):
+                self._matrix_basis_is_cartesian = True
+
         if check_field:
             if not field.is_subring(RR):
                 # Note: this does return true for the real algebraic
@@ -85,7 +96,18 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # If the basis given to us wasn't over the field that it's
         # supposed to be over, fix that. Or, you know, crash.
-        basis = tuple( b.change_ring(field) for b in basis )
+        if not cartesian_product:
+            # The field for a cartesian product algebra comes from one
+            # of its factors and is the same for all factors, so
+            # there's no need to "reapply" it on product algebras.
+            if self._matrix_basis_is_cartesian:
+                # OK since if n == 0, the basis does not consist of tuples.
+                P = basis[0].parent()
+                basis = tuple( P(tuple(b_i.change_ring(field) for b_i in b))
+                               for b in basis )
+            else:
+                basis = tuple( b.change_ring(field) for b in basis )
+
 
         if check_axioms:
             # Check commutativity of the Jordan and inner-products.
@@ -113,12 +135,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
-        n = len(basis)
-        super().__init__(field,
-                         range(n),
-                         prefix=prefix,
-                         category=category,
-                         bracket=False)
+        CombinatorialFreeModule.__init__(self,
+                                         field,
+                                         range(n),
+                                         prefix=prefix,
+                                         category=category,
+                                         bracket=False)
 
         # Now comes all of the hard work. We'll be constructing an
         # ambient vector space V that our (vectorized) basis lives in,
@@ -129,8 +151,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         degree = 0
         if n > 0:
-            # Works on both column and square matrices...
-            degree = len(basis[0].list())
+            degree = len(_all2list(basis[0]))
 
         # Build an ambient space that fits our matrix basis when
         # written out as "long vectors."
@@ -144,7 +165,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             # Save a copy of the un-orthonormalized basis for later.
             # Convert it to ambient V (vector) coordinates while we're
             # at it, because we'd have to do it later anyway.
-            deortho_vector_basis = tuple( V(b.list()) for b in basis )
+            deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
 
             from mjo.eja.eja_utils import gram_schmidt
             basis = tuple(gram_schmidt(basis, inner_product))
@@ -156,7 +177,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # Now create the vector space for the algebra, which will have
         # its own set of non-ambient coordinates (in terms of the
         # supplied basis).
-        vector_basis = tuple( V(b.list()) for b in basis )
+        vector_basis = tuple( V(_all2list(b)) for b in basis )
         W = V.span_of_basis( vector_basis, check=check_axioms)
 
         if orthonormalize:
@@ -188,7 +209,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 # The jordan product returns a matrixy answer, so we
                 # have to convert it to the algebra coordinates.
                 elt = jordan_product(q_i, q_j)
-                elt = W.coordinate_vector(V(elt.list()))
+                elt = W.coordinate_vector(V(_all2list(elt)))
                 self._multiplication_table[i][j] = self.from_vector(elt)
 
                 if not orthonormalize:
@@ -236,6 +257,35 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
 
     def product_on_basis(self, i, j):
+        r"""
+        Returns the Jordan product of the `i` and `j`th basis elements.
+
+        This completely defines the Jordan product on the algebra, and
+        is used direclty by our superclass machinery to implement
+        :meth:`product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: n = J.dimension()
+            sage: ei = J.zero()
+            sage: ej = J.zero()
+            sage: ei_ej = J.zero()*J.zero()
+            sage: if n > 0:
+            ....:     i = ZZ.random_element(n)
+            ....:     j = ZZ.random_element(n)
+            ....:     ei = J.gens()[i]
+            ....:     ej = J.gens()[j]
+            ....:     ei_ej = J.product_on_basis(i,j)
+            sage: ei*ej == ei_ej
+            True
+
+        """
         # We only stored the lower-triangular portion of the
         # multiplication table.
         if j <= i:
@@ -293,22 +343,32 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: y = J.random_element()
             sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
             True
+
         """
         B = self._inner_product_matrix
         return (B*x.to_vector()).inner_product(y.to_vector())
 
 
-    def _is_commutative(self):
+    def is_associative(self):
         r"""
-        Whether or not this algebra's multiplication table is commutative.
+        Return whether or not this algebra's Jordan product is associative.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+
+        EXAMPLES::
+
+            sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
+            sage: J.is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.is_associative()
+            True
 
-        This method should of course always return ``True``, unless
-        this algebra was constructed with ``check_axioms=False`` and
-        passed an invalid multiplication table.
         """
-        return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
-                    for i in range(self.dimension())
-                    for j in range(self.dimension()) )
+        return "Associative" in self.category().axioms()
 
     def _is_jordanian(self):
         r"""
@@ -317,7 +377,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         We only check one arrangement of `x` and `y`, so for a
         ``True`` result to be truly true, you should also check
-        :meth:`_is_commutative`. This method should of course always
+        :meth:`is_commutative`. This method should of course always
         return ``True``, unless this algebra was constructed with
         ``check_axioms=False`` and passed an invalid multiplication table.
         """
@@ -391,6 +451,15 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             ...
             ValueError: not an element of this algebra
 
+        Tuples work as well, provided that the matrix basis for the
+        algebra consists of them::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
+            e(0, 1) + e(1, 2)
+
         TESTS:
 
         Ensure that we can convert any element of the two non-matrix
@@ -407,13 +476,23 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: J(x.to_vector().column()) == x
             True
 
+        We cannot coerce elements between algebras just because their
+        matrix representations are compatible::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = JordanSpinEJA(3)
+            sage: J2(J1.one())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+            sage: J1(J2.zero())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+
         """
         msg = "not an element of this algebra"
-        if elt == 0:
-            # The superclass implementation of random_element()
-            # needs to be able to coerce "0" into the algebra.
-            return self.zero()
-        elif elt in self.base_ring():
+        if elt in self.base_ring():
             # Ensure that no base ring -> algebra coercion is performed
             # by this method. There's some stupidity in sage that would
             # otherwise propagate to this method; for example, sage thinks
@@ -421,9 +500,11 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             raise ValueError(msg)
 
         try:
+            # Try to convert a vector into a column-matrix...
             elt = elt.column()
         except (AttributeError, TypeError):
-            # Try to convert a vector into a column-matrix
+            # and ignore failure, because we weren't really expecting
+            # a vector as an argument anyway.
             pass
 
         if elt not in self.matrix_space():
@@ -436,14 +517,20 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # closure whereas the base ring of the 3-by-3 identity matrix
         # could be QQ instead of QQbar.
         #
+        # And, we also have to handle Cartesian product bases (when
+        # the matrix basis consists of tuples) here. The "good news"
+        # is that we're already converting everything to long vectors,
+        # and that strategy works for tuples as well.
+        #
         # We pass check=False because the matrix basis is "guaranteed"
         # to be linearly independent... right? Ha ha.
-        V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
-        W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()),
+        elt = _all2list(elt)
+        V = VectorSpace(self.base_ring(), len(elt))
+        W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
                              check=False)
 
         try:
-            coords =  W.coordinate_vector(_mat2vec(elt))
+            coords = W.coordinate_vector(V(elt))
         except ArithmeticError:  # vector is not in free module
             raise ValueError(msg)
 
@@ -741,12 +828,49 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         we think of them as matrices (including column vectors of the
         appropriate size).
 
-        Generally this will be an `n`-by-`1` column-vector space,
+        "By default" this will be an `n`-by-`1` column-matrix space,
         except when the algebra is trivial. There it's `n`-by-`n`
         (where `n` is zero), to ensure that two elements of the matrix
-        space (empty matrices) can be multiplied.
+        space (empty matrices) can be multiplied. For algebras of
+        matrices, this returns the space in which their
+        real embeddings live.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  TrivialEJA)
+
+        EXAMPLES:
+
+        By default, the matrix representation is just a column-matrix
+        equivalent to the vector representation::
+
+            sage: J = JordanSpinEJA(3)
+            sage: J.matrix_space()
+            Full MatrixSpace of 3 by 1 dense matrices over Algebraic
+            Real Field
+
+        The matrix representation in the trivial algebra is
+        zero-by-zero instead of the usual `n`-by-one::
+
+            sage: J = TrivialEJA()
+            sage: J.matrix_space()
+            Full MatrixSpace of 0 by 0 dense matrices over Algebraic
+            Real Field
+
+        The matrix space for complex/quaternion Hermitian matrix EJA
+        is the space in which their real-embeddings live, not the
+        original complex/quaternion matrix space::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
+            sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
 
-        Matrix algebras override this with something more useful.
         """
         if self.is_trivial():
             return MatrixSpace(self.base_ring(), 0)
@@ -1007,14 +1131,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         if not c.is_idempotent():
             raise ValueError("element is not idempotent: %s" % c)
 
-        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
-
         # Default these to what they should be if they turn out to be
         # trivial, because eigenspaces_left() won't return eigenvalues
         # corresponding to trivial spaces (e.g. it returns only the
         # eigenspace corresponding to lambda=1 if you take the
         # decomposition relative to the identity element).
-        trivial = FiniteDimensionalEJASubalgebra(self, ())
+        trivial = self.subalgebra(())
         J0 = trivial                          # eigenvalue zero
         J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
         J1 = trivial                          # eigenvalue one
@@ -1024,9 +1146,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 J5 = eigspace
             else:
                 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
-                subalg = FiniteDimensionalEJASubalgebra(self,
-                                                        gens,
-                                                        check_axioms=False)
+                subalg = self.subalgebra(gens, check_axioms=False)
                 if eigval == 0:
                     J0 = subalg
                 elif eigval == 1:
@@ -1245,6 +1365,14 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         return len(self._charpoly_coefficients())
 
 
+    def subalgebra(self, basis, **kwargs):
+        r"""
+        Create a subalgebra of this algebra from the given basis.
+        """
+        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
+        return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
+
+
     def vector_space(self):
         """
         Return the vector space that underlies this algebra.
@@ -1263,7 +1391,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         return self.zero().to_vector().parent().ambient_vector_space()
 
 
-    Element = FiniteDimensionalEJAElement
 
 class RationalBasisEJA(FiniteDimensionalEJA):
     r"""
@@ -2372,7 +2499,11 @@ class HadamardEJA(ConcreteEJA):
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
-        super().__init__(column_basis, jordan_product, inner_product, **kwargs)
+        super().__init__(column_basis,
+                         jordan_product,
+                         inner_product,
+                         associative=True,
+                         **kwargs)
         self.rank.set_cache(n)
 
         if n == 0:
@@ -2767,6 +2898,25 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         sage: J.rank() == J1.rank() + J2.rank()
         True
 
+    The product algebra will be associative if and only if all of its
+    components are associative::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J1.is_associative()
+        True
+        sage: J2 = HadamardEJA(3)
+        sage: J2.is_associative()
+        True
+        sage: J3 = RealSymmetricEJA(3)
+        sage: J3.is_associative()
+        False
+        sage: CP1 = cartesian_product([J1,J2])
+        sage: CP1.is_associative()
+        True
+        sage: CP2 = cartesian_product([J1,J3])
+        sage: CP2.is_associative()
+        False
+
     TESTS:
 
     All factors must share the same base field::
@@ -2778,19 +2928,6 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         ...
         ValueError: all factors must share the same base field
 
-    The "cached" Jordan and inner products are the componentwise
-    ones::
-
-        sage: set_random_seed()
-        sage: J1 = random_eja()
-        sage: J2 = random_eja()
-        sage: J = cartesian_product([J1,J2])
-        sage: x,y = J.random_elements(2)
-        sage: x*y == J.cartesian_jordan_product(x,y)
-        True
-        sage: x.inner_product(y) == J.cartesian_inner_product(x,y)
-        True
-
     The cached unit element is the same one that would be computed::
 
         sage: set_random_seed()              # long time
@@ -2804,31 +2941,45 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         True
 
     """
-    def __init__(self, modules, **kwargs):
+    Element = FiniteDimensionalEJAElement
+
+
+    def __init__(self, algebras, **kwargs):
         CombinatorialFreeModule_CartesianProduct.__init__(self,
-                                                          modules,
+                                                          algebras,
                                                           **kwargs)
-        field = modules[0].base_ring()
-        if not all( J.base_ring() == field for J in modules ):
+        field = algebras[0].base_ring()
+        if not all( J.base_ring() == field for J in algebras ):
             raise ValueError("all factors must share the same base field")
 
-        basis = tuple( b.to_vector().column() for b in self.basis() )
+        associative = all( m.is_associative() for m in algebras )
 
-        # Define jordan/inner products that operate on the basis.
-        def jordan_product(x_mat,y_mat):
-            x = self.from_vector(_mat2vec(x_mat))
-            y = self.from_vector(_mat2vec(y_mat))
-            return self.cartesian_jordan_product(x,y).to_vector().column()
+        # The definition of matrix_space() and self.basis() relies
+        # only on the stuff in the CFM_CartesianProduct class, which
+        # we've already initialized.
+        Js = self.cartesian_factors()
+        m = len(Js)
+        MS = self.matrix_space()
+        basis = tuple(
+            MS(tuple( self.cartesian_projection(i)(b).to_matrix()
+                      for i in range(m) ))
+            for b in self.basis()
+        )
 
-        def inner_product(x_mat, y_mat):
-            x = self.from_vector(_mat2vec(x_mat))
-            y = self.from_vector(_mat2vec(y_mat))
-            return self.cartesian_inner_product(x,y)
+        # Define jordan/inner products that operate on that matrix_basis.
+        def jordan_product(x,y):
+            return MS(tuple(
+                (Js[i](x[i])*Js[i](y[i])).to_matrix() for i in range(m)
+            ))
+
+        def inner_product(x, y):
+            return sum(
+                Js[i](x[i]).inner_product(Js[i](y[i])) for i in range(m)
+            )
 
-        # Use whatever category the superclass came up with. Usually
-        # some join of the EJA and Cartesian product
-        # categories. There's no need to check the field since it
-        # already came from an EJA.
+        # There's no need to check the field since it already came
+        # from an EJA. Likewise the axioms are guaranteed to be
+        # satisfied, unless the guy writing this class sucks.
         #
         # If you want the basis to be orthonormalized, orthonormalize
         # the factors.
@@ -2838,27 +2989,14 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
                                       inner_product,
                                       field=field,
                                       orthonormalize=False,
+                                      associative=associative,
                                       cartesian_product=True,
                                       check_field=False,
                                       check_axioms=False)
 
-        ones = tuple(J.one() for J in modules)
+        ones = tuple(J.one() for J in algebras)
         self.one.set_cache(self._cartesian_product_of_elements(ones))
-        self.rank.set_cache(sum(J.rank() for J in modules))
-
-        # Now that everything else is ready, we clobber our computed
-        # matrix basis with the "correct" one consisting of ordered
-        # tuples. Since we didn't orthonormalize our basis, we can
-        # create these from the basis that was handed to us; that is,
-        # we don't need to use the one that the earlier __init__()
-        # method came up with.
-        m = len(self.cartesian_factors())
-        MS = self.matrix_space()
-        self._matrix_basis = tuple(
-            MS(tuple( self.cartesian_projection(i)(b).to_matrix()
-                      for i in range(m) ))
-            for b in self.basis()
-        )
+        self.rank.set_cache(sum(J.rank() for J in algebras))
 
     def matrix_space(self):
         r"""
@@ -3069,112 +3207,7 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
 
-    def cartesian_jordan_product(self, x, y):
-        r"""
-        The componentwise Jordan product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        Jordan products from the subalgebras. This may still be useful
-        after (if) the default Jordan product in the Cartesian product
-        algebra is overridden.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  JordanSpinEJA)
-
-        EXAMPLE::
-
-            sage: J1 = HadamardEJA(3)
-            sage: J2 = JordanSpinEJA(3)
-            sage: J = cartesian_product([J1,J2])
-            sage: x1 = J1.from_vector(vector(QQ,(1,2,1)))
-            sage: y1 = J1.from_vector(vector(QQ,(1,0,2)))
-            sage: x2 = J2.from_vector(vector(QQ,(1,2,3)))
-            sage: y2 = J2.from_vector(vector(QQ,(1,1,1)))
-            sage: z1 = J.from_vector(vector(QQ,(1,2,1,1,2,3)))
-            sage: z2 = J.from_vector(vector(QQ,(1,0,2,1,1,1)))
-            sage: (x1*y1).to_vector()
-            (1, 0, 2)
-            sage: (x2*y2).to_vector()
-            (6, 3, 4)
-            sage: J.cartesian_jordan_product(z1,z2).to_vector()
-            (1, 0, 2, 6, 3, 4)
-
-        """
-        m = len(self.cartesian_factors())
-        projections = ( self.cartesian_projection(i) for i in range(m) )
-        products = ( P(x)*P(y) for P in projections )
-        return self._cartesian_product_of_elements(tuple(products))
-
-    def cartesian_inner_product(self, x, y):
-        r"""
-        The standard componentwise Cartesian inner-product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        inner-products from the subalgebras. This may still be useful
-        after (if) the default inner product in the Cartesian product
-        algebra is overridden.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  QuaternionHermitianEJA)
-
-        EXAMPLE::
-
-            sage: J1 = HadamardEJA(3,field=QQ)
-            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
-            sage: J = cartesian_product([J1,J2])
-            sage: x1 = J1.one()
-            sage: x2 = x1
-            sage: y1 = J2.one()
-            sage: y2 = y1
-            sage: x1.inner_product(x2)
-            3
-            sage: y1.inner_product(y2)
-            2
-            sage: z1 = J._cartesian_product_of_elements((x1,y1))
-            sage: z2 = J._cartesian_product_of_elements((x2,y2))
-            sage: J.cartesian_inner_product(z1,z2)
-            5
-
-        """
-        m = len(self.cartesian_factors())
-        projections = ( self.cartesian_projection(i) for i in range(m) )
-        return sum( P(x).inner_product(P(y)) for P in projections )
-
-
-    def _element_constructor_(self, elt):
-        r"""
-        Construct an element of this algebra from an ordered tuple.
-
-        We just apply the element constructor from each of our factors
-        to the corresponding component of the tuple, and package up
-        the result.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  RealSymmetricEJA)
-
-        EXAMPLES::
-
-            sage: J1 = HadamardEJA(3)
-            sage: J2 = RealSymmetricEJA(2)
-            sage: J = cartesian_product([J1,J2])
-            sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
-            e(0, 1) + e(1, 2)
-        """
-        m = len(self.cartesian_factors())
-        try:
-            z = tuple( self.cartesian_factors()[i](elt[i]) for i in range(m) )
-            return self._cartesian_product_of_elements(z)
-        except:
-            raise ValueError("not an element of this algebra")
-
-    Element = CartesianProductEJAElement
-
 
 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
+
 random_eja = ConcreteEJA.random_instance