]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: fix a randomly failing (in dimension zero) test.
[sage.d.git] / mjo / eja / eja_algebra.py
index 7da2207e9bce1fdf306d06586f7f8bd0ca63e648..d012dd86c09a0596933059d1a43d7aca55e5d9a2 100644 (file)
@@ -1,9 +1,53 @@
 """
-Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
-specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
-are used in optimization, and have some additional nice methods beyond
-what can be supported in a general Jordan Algebra.
-
+Representations and constructions for Euclidean Jordan algebras.
+
+A Euclidean Jordan algebra is a Jordan algebra that has some
+additional properties:
+
+  1.   It is finite-dimensional.
+  2.   Its scalar field is the real numbers.
+  3a.  An inner product is defined on it, and...
+  3b.  That inner product is compatible with the Jordan product
+       in the sense that `<x*y,z> = <y,x*z>` for all elements
+       `x,y,z` in the algebra.
+
+Every Euclidean Jordan algebra is formally-real: for any two elements
+`x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
+0`. Conversely, every finite-dimensional formally-real Jordan algebra
+can be made into a Euclidean Jordan algebra with an appropriate choice
+of inner-product.
+
+Formally-real Jordan algebras were originally studied as a framework
+for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
+symmetric cone optimization, since every symmetric cone arises as the
+cone of squares in some Euclidean Jordan algebra.
+
+It is known that every Euclidean Jordan algebra decomposes into an
+orthogonal direct sum (essentially, a Cartesian product) of simple
+algebras, and that moreover, up to Jordan-algebra isomorphism, there
+are only five families of simple algebras. We provide constructions
+for these simple algebras:
+
+  * :class:`BilinearFormEJA`
+  * :class:`RealSymmetricEJA`
+  * :class:`ComplexHermitianEJA`
+  * :class:`QuaternionHermitianEJA`
+
+Missing from this list is the algebra of three-by-three octononion
+Hermitian matrices, as there is (as of yet) no implementation of the
+octonions in SageMath. In addition to these, we provide two other
+example constructions,
+
+  * :class:`HadamardEJA`
+  * :class:`TrivialEJA`
+
+The Jordan spin algebra is a bilinear form algebra where the bilinear
+form is the identity. The Hadamard EJA is simply a Cartesian product
+of one-dimensional spin algebras. And last but not least, the trivial
+EJA is exactly what you think. Cartesian products of these are also
+supported using the usual ``cartesian_product()`` function; as a
+result, we support (up to isomorphism) all Euclidean Jordan algebras
+that don't involve octonions.
 
 SETUP::
 
@@ -13,7 +57,6 @@ EXAMPLES::
 
     sage: random_eja()
     Euclidean Jordan algebra of dimension...
-
 """
 
 from itertools import repeat
@@ -33,7 +76,7 @@ from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
                             QuadraticField)
 from mjo.eja.eja_element import FiniteDimensionalEJAElement
 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
-from mjo.eja.eja_utils import _mat2vec
+from mjo.eja.eja_utils import _all2list, _mat2vec
 
 class FiniteDimensionalEJA(CombinatorialFreeModule):
     r"""
@@ -41,16 +84,33 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
     INPUT:
 
-      - basis -- a tuple of basis elements in their matrix form.
-
-      - jordan_product -- function of two elements (in matrix form)
-        that returns their jordan product in this algebra; this will
-        be applied to ``basis`` to compute a multiplication table for
-        the algebra.
-
-      - inner_product -- function of two elements (in matrix form) that
-        returns their inner product. This will be applied to ``basis`` to
-        compute an inner-product table (basically a matrix) for this algebra.
+      - ``basis`` -- a tuple; a tuple of basis elements in "matrix
+        form," which must be the same form as the arguments to
+        ``jordan_product`` and ``inner_product``. In reality, "matrix
+        form" can be either vectors, matrices, or a Cartesian product
+        (ordered tuple) of vectors or matrices. All of these would
+        ideally be vector spaces in sage with no special-casing
+        needed; but in reality we turn vectors into column-matrices
+        and Cartesian products `(a,b)` into column matrices
+        `(a,b)^{T}` after converting `a` and `b` themselves.
+
+      - ``jordan_product`` -- a function; afunction of two ``basis``
+        elements (in matrix form) that returns their jordan product,
+        also in matrix form; this will be applied to ``basis`` to
+        compute a multiplication table for the algebra.
+
+      - ``inner_product`` -- a function; a function of two ``basis``
+        elements (in matrix form) that returns their inner
+        product. This will be applied to ``basis`` to compute an
+        inner-product table (basically a matrix) for this algebra.
+
+      - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
+        field for the algebra.
+
+      - ``orthonormalize`` -- boolean (default: ``True``); whether or
+        not to orthonormalize the basis. Doing so is expensive and
+        generally rules out using the rationals as your ``field``, but
+        is required for spectral decompositions.
 
     """
     Element = FiniteDimensionalEJAElement
@@ -62,10 +122,22 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                  field=AA,
                  orthonormalize=True,
                  associative=False,
+                 cartesian_product=False,
                  check_field=True,
                  check_axioms=True,
-                 prefix='e',
-                 category=None):
+                 prefix='e'):
+
+        # Keep track of whether or not the matrix basis consists of
+        # tuples, since we need special cases for them damned near
+        # everywhere.  This is INDEPENDENT of whether or not the
+        # algebra is a cartesian product, since a subalgebra of a
+        # cartesian product will have a basis of tuples, but will not
+        # in general itself be a cartesian product algebra.
+        self._matrix_basis_is_cartesian = False
+        n = len(basis)
+        if n > 0:
+            if hasattr(basis[0], 'cartesian_factors'):
+                self._matrix_basis_is_cartesian = True
 
         if check_field:
             if not field.is_subring(RR):
@@ -76,7 +148,18 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # If the basis given to us wasn't over the field that it's
         # supposed to be over, fix that. Or, you know, crash.
-        basis = tuple( b.change_ring(field) for b in basis )
+        if not cartesian_product:
+            # The field for a cartesian product algebra comes from one
+            # of its factors and is the same for all factors, so
+            # there's no need to "reapply" it on product algebras.
+            if self._matrix_basis_is_cartesian:
+                # OK since if n == 0, the basis does not consist of tuples.
+                P = basis[0].parent()
+                basis = tuple( P(tuple(b_i.change_ring(field) for b_i in b))
+                               for b in basis )
+            else:
+                basis = tuple( b.change_ring(field) for b in basis )
+
 
         if check_axioms:
             # Check commutativity of the Jordan and inner-products.
@@ -94,21 +177,23 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 raise ValueError("inner-product is not commutative")
 
 
-        if category is None:
-            category = MagmaticAlgebras(field).FiniteDimensional()
-            category = category.WithBasis().Unital()
-            if associative:
-                # Element subalgebras can take advantage of this.
-                category = category.Associative()
+        category = MagmaticAlgebras(field).FiniteDimensional()
+        category = category.WithBasis().Unital().Commutative()
+
+        if associative:
+            # Element subalgebras can take advantage of this.
+            category = category.Associative()
+        if cartesian_product:
+            category = category.CartesianProducts()
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
-        n = len(basis)
-        super().__init__(field,
-                         range(n),
-                         prefix=prefix,
-                         category=category,
-                         bracket=False)
+        CombinatorialFreeModule.__init__(self,
+                                         field,
+                                         range(n),
+                                         prefix=prefix,
+                                         category=category,
+                                         bracket=False)
 
         # Now comes all of the hard work. We'll be constructing an
         # ambient vector space V that our (vectorized) basis lives in,
@@ -119,8 +204,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         degree = 0
         if n > 0:
-            # Works on both column and square matrices...
-            degree = len(basis[0].list())
+            degree = len(_all2list(basis[0]))
 
         # Build an ambient space that fits our matrix basis when
         # written out as "long vectors."
@@ -134,7 +218,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             # Save a copy of the un-orthonormalized basis for later.
             # Convert it to ambient V (vector) coordinates while we're
             # at it, because we'd have to do it later anyway.
-            deortho_vector_basis = tuple( V(b.list()) for b in basis )
+            deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
 
             from mjo.eja.eja_utils import gram_schmidt
             basis = tuple(gram_schmidt(basis, inner_product))
@@ -146,7 +230,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # Now create the vector space for the algebra, which will have
         # its own set of non-ambient coordinates (in terms of the
         # supplied basis).
-        vector_basis = tuple( V(b.list()) for b in basis )
+        vector_basis = tuple( V(_all2list(b)) for b in basis )
         W = V.span_of_basis( vector_basis, check=check_axioms)
 
         if orthonormalize:
@@ -178,7 +262,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 # The jordan product returns a matrixy answer, so we
                 # have to convert it to the algebra coordinates.
                 elt = jordan_product(q_i, q_j)
-                elt = W.coordinate_vector(V(elt.list()))
+                elt = W.coordinate_vector(V(_all2list(elt)))
                 self._multiplication_table[i][j] = self.from_vector(elt)
 
                 if not orthonormalize:
@@ -226,6 +310,35 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
 
     def product_on_basis(self, i, j):
+        r"""
+        Returns the Jordan product of the `i` and `j`th basis elements.
+
+        This completely defines the Jordan product on the algebra, and
+        is used direclty by our superclass machinery to implement
+        :meth:`product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: n = J.dimension()
+            sage: ei = J.zero()
+            sage: ej = J.zero()
+            sage: ei_ej = J.zero()*J.zero()
+            sage: if n > 0:
+            ....:     i = ZZ.random_element(n)
+            ....:     j = ZZ.random_element(n)
+            ....:     ei = J.gens()[i]
+            ....:     ej = J.gens()[j]
+            ....:     ei_ej = J.product_on_basis(i,j)
+            sage: ei*ej == ei_ej
+            True
+
+        """
         # We only stored the lower-triangular portion of the
         # multiplication table.
         if j <= i:
@@ -283,11 +396,33 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: y = J.random_element()
             sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
             True
+
         """
         B = self._inner_product_matrix
         return (B*x.to_vector()).inner_product(y.to_vector())
 
 
+    def is_associative(self):
+        r"""
+        Return whether or not this algebra's Jordan product is associative.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+
+        EXAMPLES::
+
+            sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
+            sage: J.is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.is_associative()
+            True
+
+        """
+        return "Associative" in self.category().axioms()
+
     def _is_commutative(self):
         r"""
         Whether or not this algebra's multiplication table is commutative.
@@ -311,12 +446,87 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         return ``True``, unless this algebra was constructed with
         ``check_axioms=False`` and passed an invalid multiplication table.
         """
-        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
+        return all( (self.gens()[i]**2)*(self.gens()[i]*self.gens()[j])
                     ==
-                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
+                    (self.gens()[i])*((self.gens()[i]**2)*self.gens()[j])
                     for i in range(self.dimension())
                     for j in range(self.dimension()) )
 
+    def _jordan_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's Jordan product is
+        associative; that is, whether or not `x*(y*z) = (x*y)*z`
+        for all `x,y,x`.
+
+        This method should agree with :meth:`is_associative` unless
+        you lied about the value of the ``associative`` parameter
+        when you constructed the algebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA)
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(4, orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = QuaternionHermitianEJA(2)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
+            True
+
+        """
+        R = self.base_ring()
+
+        # Used to check whether or not something is zero.
+        epsilon = R.zero()
+        if not R.is_exact():
+            # I don't know of any examples that make this magnitude
+            # necessary because I don't know how to make an
+            # associative algebra when the element subalgebra
+            # construction is unreliable (as it is over RDF; we can't
+            # find the degree of an element because we can't compute
+            # the rank of a matrix). But even multiplication of floats
+            # is non-associative, so *some* epsilon is needed... let's
+            # just take the one from _inner_product_is_associative?
+            epsilon = 1e-15
+
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.gens()[i]
+                    y = self.gens()[j]
+                    z = self.gens()[k]
+                    diff = (x*y)*z - x*(y*z)
+
+                    if diff.norm() > epsilon:
+                        return False
+
+        return True
+
     def _inner_product_is_associative(self):
         r"""
         Return whether or not this algebra's inner product `B` is
@@ -326,26 +536,25 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         this algebra was constructed with ``check_axioms=False`` and
         passed an invalid Jordan or inner-product.
         """
+        R = self.base_ring()
 
-        # Used to check whether or not something is zero in an inexact
-        # ring. This number is sufficient to allow the construction of
-        # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
-        epsilon = 1e-16
+        # Used to check whether or not something is zero.
+        epsilon = R.zero()
+        if not R.is_exact():
+            # This choice is sufficient to allow the construction of
+            # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
+            epsilon = 1e-15
 
         for i in range(self.dimension()):
             for j in range(self.dimension()):
                 for k in range(self.dimension()):
-                    x = self.monomial(i)
-                    y = self.monomial(j)
-                    z = self.monomial(k)
+                    x = self.gens()[i]
+                    y = self.gens()[j]
+                    z = self.gens()[k]
                     diff = (x*y).inner_product(z) - x.inner_product(y*z)
 
-                    if self.base_ring().is_exact():
-                        if diff != 0:
-                            return False
-                    else:
-                        if diff.abs() > epsilon:
-                            return False
+                    if diff.abs() > epsilon:
+                        return False
 
         return True
 
@@ -381,29 +590,42 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             ...
             ValueError: not an element of this algebra
 
+        Tuples work as well, provided that the matrix basis for the
+        algebra consists of them::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
+            e(0, 1) + e(1, 2)
+
         TESTS:
 
-        Ensure that we can convert any element of the two non-matrix
-        simple algebras (whose matrix representations are columns)
-        back and forth faithfully::
+        Ensure that we can convert any element back and forth
+        faithfully between its matrix and algebra representations::
 
             sage: set_random_seed()
-            sage: J = HadamardEJA.random_instance()
-            sage: x = J.random_element()
-            sage: J(x.to_vector().column()) == x
-            True
-            sage: J = JordanSpinEJA.random_instance()
+            sage: J = random_eja()
             sage: x = J.random_element()
-            sage: J(x.to_vector().column()) == x
+            sage: J(x.to_matrix()) == x
             True
 
+        We cannot coerce elements between algebras just because their
+        matrix representations are compatible::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = JordanSpinEJA(3)
+            sage: J2(J1.one())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+            sage: J1(J2.zero())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
         """
         msg = "not an element of this algebra"
-        if elt == 0:
-            # The superclass implementation of random_element()
-            # needs to be able to coerce "0" into the algebra.
-            return self.zero()
-        elif elt in self.base_ring():
+        if elt in self.base_ring():
             # Ensure that no base ring -> algebra coercion is performed
             # by this method. There's some stupidity in sage that would
             # otherwise propagate to this method; for example, sage thinks
@@ -411,9 +633,11 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             raise ValueError(msg)
 
         try:
+            # Try to convert a vector into a column-matrix...
             elt = elt.column()
         except (AttributeError, TypeError):
-            # Try to convert a vector into a column-matrix
+            # and ignore failure, because we weren't really expecting
+            # a vector as an argument anyway.
             pass
 
         if elt not in self.matrix_space():
@@ -426,14 +650,20 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # closure whereas the base ring of the 3-by-3 identity matrix
         # could be QQ instead of QQbar.
         #
+        # And, we also have to handle Cartesian product bases (when
+        # the matrix basis consists of tuples) here. The "good news"
+        # is that we're already converting everything to long vectors,
+        # and that strategy works for tuples as well.
+        #
         # We pass check=False because the matrix basis is "guaranteed"
         # to be linearly independent... right? Ha ha.
-        V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
-        W = V.span_of_basis( (_mat2vec(s) for s in self.matrix_basis()),
+        elt = _all2list(elt)
+        V = VectorSpace(self.base_ring(), len(elt))
+        W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
                              check=False)
 
         try:
-            coords =  W.coordinate_vector(_mat2vec(elt))
+            coords = W.coordinate_vector(V(elt))
         except ArithmeticError:  # vector is not in free module
             raise ValueError(msg)
 
@@ -660,8 +890,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # And to each subsequent row, prepend an entry that belongs to
         # the left-side "header column."
-        M += [ [self.monomial(i)] + [ self.product_on_basis(i,j)
-                                      for j in range(n) ]
+        M += [ [self.gens()[i]] + [ self.product_on_basis(i,j)
+                                    for j in range(n) ]
                for i in range(n) ]
 
         return table(M, header_row=True, header_column=True, frame=True)
@@ -731,12 +961,49 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         we think of them as matrices (including column vectors of the
         appropriate size).
 
-        Generally this will be an `n`-by-`1` column-vector space,
+        "By default" this will be an `n`-by-`1` column-matrix space,
         except when the algebra is trivial. There it's `n`-by-`n`
         (where `n` is zero), to ensure that two elements of the matrix
-        space (empty matrices) can be multiplied.
+        space (empty matrices) can be multiplied. For algebras of
+        matrices, this returns the space in which their
+        real embeddings live.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  TrivialEJA)
+
+        EXAMPLES:
+
+        By default, the matrix representation is just a column-matrix
+        equivalent to the vector representation::
+
+            sage: J = JordanSpinEJA(3)
+            sage: J.matrix_space()
+            Full MatrixSpace of 3 by 1 dense matrices over Algebraic
+            Real Field
+
+        The matrix representation in the trivial algebra is
+        zero-by-zero instead of the usual `n`-by-one::
+
+            sage: J = TrivialEJA()
+            sage: J.matrix_space()
+            Full MatrixSpace of 0 by 0 dense matrices over Algebraic
+            Real Field
+
+        The matrix space for complex/quaternion Hermitian matrix EJA
+        is the space in which their real-embeddings live, not the
+        original complex/quaternion matrix space::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
+            sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
 
-        Matrix algebras override this with something more useful.
         """
         if self.is_trivial():
             return MatrixSpace(self.base_ring(), 0)
@@ -997,14 +1264,12 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         if not c.is_idempotent():
             raise ValueError("element is not idempotent: %s" % c)
 
-        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
-
         # Default these to what they should be if they turn out to be
         # trivial, because eigenspaces_left() won't return eigenvalues
         # corresponding to trivial spaces (e.g. it returns only the
         # eigenspace corresponding to lambda=1 if you take the
         # decomposition relative to the identity element).
-        trivial = FiniteDimensionalEJASubalgebra(self, ())
+        trivial = self.subalgebra(())
         J0 = trivial                          # eigenvalue zero
         J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
         J1 = trivial                          # eigenvalue one
@@ -1014,9 +1279,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 J5 = eigspace
             else:
                 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
-                subalg = FiniteDimensionalEJASubalgebra(self,
-                                                        gens,
-                                                        check_axioms=False)
+                subalg = self.subalgebra(gens, check_axioms=False)
                 if eigval == 0:
                     J0 = subalg
                 elif eigval == 1:
@@ -1129,7 +1392,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         def L_x_i_j(i,j):
             # From a result in my book, these are the entries of the
             # basis representation of L_x.
-            return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
+            return sum( vars[k]*self.gens()[k].operator().matrix()[i,j]
                         for k in range(n) )
 
         L_x = matrix(F, n, n, L_x_i_j)
@@ -1235,6 +1498,14 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         return len(self._charpoly_coefficients())
 
 
+    def subalgebra(self, basis, **kwargs):
+        r"""
+        Create a subalgebra of this algebra from the given basis.
+        """
+        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
+        return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
+
+
     def vector_space(self):
         """
         Return the vector space that underlies this algebra.
@@ -1253,7 +1524,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         return self.zero().to_vector().parent().ambient_vector_space()
 
 
-    Element = FiniteDimensionalEJAElement
 
 class RationalBasisEJA(FiniteDimensionalEJA):
     r"""
@@ -1587,9 +1857,9 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
 
     In theory, our "field" can be any subfield of the reals::
 
-        sage: RealSymmetricEJA(2, field=RDF)
+        sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
         Euclidean Jordan algebra of dimension 3 over Real Double Field
-        sage: RealSymmetricEJA(2, field=RR)
+        sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
         Euclidean Jordan algebra of dimension 3 over Real Field with
         53 bits of precision
 
@@ -1855,9 +2125,9 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
 
     In theory, our "field" can be any subfield of the reals::
 
-        sage: ComplexHermitianEJA(2, field=RDF)
+        sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
         Euclidean Jordan algebra of dimension 4 over Real Double Field
-        sage: ComplexHermitianEJA(2, field=RR)
+        sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
         Euclidean Jordan algebra of dimension 4 over Real Field with
         53 bits of precision
 
@@ -2152,9 +2422,9 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
 
     In theory, our "field" can be any subfield of the reals::
 
-        sage: QuaternionHermitianEJA(2, field=RDF)
+        sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
         Euclidean Jordan algebra of dimension 6 over Real Double Field
-        sage: QuaternionHermitianEJA(2, field=RR)
+        sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
         Euclidean Jordan algebra of dimension 6 over Real Field with
         53 bits of precision
 
@@ -2362,7 +2632,11 @@ class HadamardEJA(ConcreteEJA):
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
-        super().__init__(column_basis, jordan_product, inner_product, **kwargs)
+        super().__init__(column_basis,
+                         jordan_product,
+                         inner_product,
+                         associative=True,
+                         **kwargs)
         self.rank.set_cache(n)
 
         if n == 0:
@@ -2690,7 +2964,8 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import (CartesianProductEJA,
+        sage: from mjo.eja.eja_algebra import (random_eja,
+        ....:                                  CartesianProductEJA,
         ....:                                  HadamardEJA,
         ....:                                  JordanSpinEJA,
         ....:                                  RealSymmetricEJA)
@@ -2729,6 +3004,52 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         Real Field (+) Euclidean Jordan algebra of dimension 6 over
         Algebraic Real Field
 
+    Rank is additive on a Cartesian product::
+
+        sage: J1 = HadamardEJA(1)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
+        sage: J.rank()
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
+    The same rank computation works over the rationals, with whatever
+    basis you like::
+
+        sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
+        sage: J.rank()
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
+    The product algebra will be associative if and only if all of its
+    components are associative::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J1.is_associative()
+        True
+        sage: J2 = HadamardEJA(3)
+        sage: J2.is_associative()
+        True
+        sage: J3 = RealSymmetricEJA(3)
+        sage: J3.is_associative()
+        False
+        sage: CP1 = cartesian_product([J1,J2])
+        sage: CP1.is_associative()
+        True
+        sage: CP2 = cartesian_product([J1,J3])
+        sage: CP2.is_associative()
+        False
+
     TESTS:
 
     All factors must share the same base field::
@@ -2740,39 +3061,100 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         ...
         ValueError: all factors must share the same base field
 
+    The cached unit element is the same one that would be computed::
+
+        sage: set_random_seed()              # long time
+        sage: J1 = random_eja()              # long time
+        sage: J2 = random_eja()              # long time
+        sage: J = cartesian_product([J1,J2]) # long time
+        sage: actual = J.one()               # long time
+        sage: J.one.clear_cache()            # long time
+        sage: expected = J.one()             # long time
+        sage: actual == expected             # long time
+        True
+
     """
-    def __init__(self, modules, **kwargs):
-        CombinatorialFreeModule_CartesianProduct.__init__(self, modules, **kwargs)
-        field = modules[0].base_ring()
-        if not all( J.base_ring() == field for J in modules ):
+    Element = FiniteDimensionalEJAElement
+
+
+    def __init__(self, algebras, **kwargs):
+        CombinatorialFreeModule_CartesianProduct.__init__(self,
+                                                          algebras,
+                                                          **kwargs)
+        field = algebras[0].base_ring()
+        if not all( J.base_ring() == field for J in algebras ):
             raise ValueError("all factors must share the same base field")
 
-        M = cartesian_product( [J.matrix_space() for J in modules] )
+        associative = all( m.is_associative() for m in algebras )
+
+        # The definition of matrix_space() and self.basis() relies
+        # only on the stuff in the CFM_CartesianProduct class, which
+        # we've already initialized.
+        Js = self.cartesian_factors()
+        m = len(Js)
+        MS = self.matrix_space()
+        basis = tuple(
+            MS(tuple( self.cartesian_projection(i)(b).to_matrix()
+                      for i in range(m) ))
+            for b in self.basis()
+        )
 
-        m = len(modules)
-        W = VectorSpace(field,m)
-        self._matrix_basis = []
-        for k in range(m):
-            for a in modules[k].matrix_basis():
-                v = W.zero().list()
-                v[k] = a
-                self._matrix_basis.append(M(v))
+        # Define jordan/inner products that operate on that matrix_basis.
+        def jordan_product(x,y):
+            return MS(tuple(
+                (Js[i](x[i])*Js[i](y[i])).to_matrix() for i in range(m)
+            ))
 
-        self._matrix_basis = tuple(self._matrix_basis)
+        def inner_product(x, y):
+            return sum(
+                Js[i](x[i]).inner_product(Js[i](y[i])) for i in range(m)
+            )
 
-        n = len(self._matrix_basis)
-        # TODO:
-        #
-        # Initialize the FDEJA class, too. Does this override the
-        # initialization that we did for the
-        # CombinatorialFreeModule_CartesianProduct class? If not, we
-        # will probably have to duplicate some of the work (i.e. one
-        # of the constructors).  Since the CartesianProduct one is
-        # smaller, that makes the most sense to copy/paste if it comes
-        # down to that.
+        # There's no need to check the field since it already came
+        # from an EJA. Likewise the axioms are guaranteed to be
+        # satisfied, unless the guy writing this class sucks.
         #
+        # If you want the basis to be orthonormalized, orthonormalize
+        # the factors.
+        FiniteDimensionalEJA.__init__(self,
+                                      basis,
+                                      jordan_product,
+                                      inner_product,
+                                      field=field,
+                                      orthonormalize=False,
+                                      associative=associative,
+                                      cartesian_product=True,
+                                      check_field=False,
+                                      check_axioms=False)
+
+        ones = tuple(J.one() for J in algebras)
+        self.one.set_cache(self._cartesian_product_of_elements(ones))
+        self.rank.set_cache(sum(J.rank() for J in algebras))
 
-        self.rank.set_cache(sum(J.rank() for J in modules))
+    def matrix_space(self):
+        r"""
+        Return the space that our matrix basis lives in as a Cartesian
+        product.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            ....:                                  RealSymmetricEJA)
+
+        EXAMPLES::
+
+            sage: J1 = HadamardEJA(1)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.matrix_space()
+            The Cartesian product of (Full MatrixSpace of 1 by 1 dense
+            matrices over Algebraic Real Field, Full MatrixSpace of 2
+            by 2 dense matrices over Algebraic Real Field)
+
+        """
+        from sage.categories.cartesian_product import cartesian_product
+        return cartesian_product( [J.matrix_space()
+                                   for J in self.cartesian_factors()] )
 
     @cached_method
     def cartesian_projection(self, i):
@@ -2780,10 +3162,15 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
-            ....:                                  RealSymmetricEJA)
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The projection morphisms are Euclidean Jordan algebra
+        operators::
 
             sage: J1 = HadamardEJA(2)
             sage: J2 = RealSymmetricEJA(2)
@@ -2810,6 +3197,21 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
             Real Field
 
+        The projections work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(2)
+            sage: J2 = ComplexHermitianEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left(J.one()).to_vector()
+            (1, 0)
+            sage: pi_right(J.one()).to_vector()
+            (1, 0, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+
         TESTS:
 
         The answer never changes::
@@ -2825,12 +3227,8 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
 
         """
         Ji = self.cartesian_factors()[i]
-        # We reimplement the CombinatorialFreeModule superclass method
-        # because if we don't, something gets messed up with the caching
-        # and the answer changes the second time you run it. See the TESTS.
-        Pi = self._module_morphism(lambda j_t: Ji.monomial(j_t[1])
-                                   if i == j_t[0] else Ji.zero(),
-                                   codomain=Ji)
+        # Requires the fix on Trac 31421/31422 to work!
+        Pi = super().cartesian_projection(i)
         return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
 
     @cached_method
@@ -2839,10 +3237,14 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
             ....:                                  RealSymmetricEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The embedding morphisms are Euclidean Jordan algebra
+        operators::
 
             sage: J1 = HadamardEJA(2)
             sage: J2 = RealSymmetricEJA(2)
@@ -2874,6 +3276,29 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             Algebraic Real Field (+) Euclidean Jordan algebra of
             dimension 3 over Algebraic Real Field
 
+        The embeddings work the way you'd expect on the vector
+        representation of an element::
+
+            sage: J1 = JordanSpinEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: iota_left(J1.zero()) == J.zero()
+            True
+            sage: iota_right(J2.zero()) == J.zero()
+            True
+            sage: J1.one().to_vector()
+            (1, 0, 0)
+            sage: iota_left(J1.one()).to_vector()
+            (1, 0, 0, 0, 0, 0)
+            sage: J2.one().to_vector()
+            (1, 0, 1)
+            sage: iota_right(J2.one()).to_vector()
+            (0, 0, 0, 1, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 0, 1, 0, 1)
+
         TESTS:
 
         The answer never changes::
@@ -2887,199 +3312,73 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             sage: E0 == E1
             True
 
+        Composing a projection with the corresponding inclusion should
+        produce the identity map, and mismatching them should produce
+        the zero map::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
+            sage: pi_left*iota_left == J1.one().operator()
+            True
+            sage: pi_right*iota_right == J2.one().operator()
+            True
+            sage: (pi_left*iota_right).is_zero()
+            True
+            sage: (pi_right*iota_left).is_zero()
+            True
+
         """
         Ji = self.cartesian_factors()[i]
-        # We reimplement the CombinatorialFreeModule superclass method
-        # because if we don't, something gets messed up with the caching
-        # and the answer changes the second time you run it. See the TESTS.
-        Ei = Ji._module_morphism(lambda t: self.monomial((i, t)), codomain=self)
+        # Requires the fix on Trac 31421/31422 to work!
+        Ei = super().cartesian_embedding(i)
         return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
 
-    def cartesian_jordan_product(self, x, y):
-        r"""
-        The componentwise Jordan product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        Jordan products from the subalgebras. This may still be useful
-        after (if) the default Jordan product in the Cartesian product
-        algebra is overridden.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  JordanSpinEJA)
-
-        EXAMPLE::
 
-            sage: J1 = HadamardEJA(3)
-            sage: J2 = JordanSpinEJA(3)
-            sage: J = cartesian_product([J1,J2])
-            sage: x1 = J1.from_vector(vector(QQ,(1,2,1)))
-            sage: y1 = J1.from_vector(vector(QQ,(1,0,2)))
-            sage: x2 = J2.from_vector(vector(QQ,(1,2,3)))
-            sage: y2 = J2.from_vector(vector(QQ,(1,1,1)))
-            sage: z1 = J.from_vector(vector(QQ,(1,2,1,1,2,3)))
-            sage: z2 = J.from_vector(vector(QQ,(1,0,2,1,1,1)))
-            sage: (x1*y1).to_vector()
-            (1, 0, 2)
-            sage: (x2*y2).to_vector()
-            (6, 3, 4)
-            sage: J.cartesian_jordan_product(z1,z2).to_vector()
-            (1, 0, 2, 6, 3, 4)
-
-        """
-        m = len(self.cartesian_factors())
-        projections = ( self.cartesian_projection(i) for i in range(m) )
-        products = ( P(x)*P(y) for P in projections )
-        return self._cartesian_product_of_elements(tuple(products))
-
-    def cartesian_inner_product(self, x, y):
-        r"""
-        The standard componentwise Cartesian inner-product.
-
-        We project ``x`` and ``y`` onto our factors, and add up the
-        inner-products from the subalgebras. This may still be useful
-        after (if) the default inner product in the Cartesian product
-        algebra is overridden.
-
-        SETUP::
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  QuaternionHermitianEJA)
+class RationalBasisCartesianProductEJA(CartesianProductEJA,
+                                       RationalBasisEJA):
+    r"""
+    A separate class for products of algebras for which we know a
+    rational basis.
 
-        EXAMPLE::
+    SETUP::
 
-            sage: J1 = HadamardEJA(3,field=QQ)
-            sage: J2 = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
-            sage: J = cartesian_product([J1,J2])
-            sage: x1 = J1.one()
-            sage: x2 = x1
-            sage: y1 = J2.one()
-            sage: y2 = y1
-            sage: x1.inner_product(x2)
-            3
-            sage: y1.inner_product(y2)
-            2
-            sage: z1 = J._cartesian_product_of_elements((x1,y1))
-            sage: z2 = J._cartesian_product_of_elements((x2,y2))
-            sage: J.cartesian_inner_product(z1,z2)
-            5
+        sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
 
-        """
-        m = len(self.cartesian_factors())
-        projections = ( self.cartesian_projection(i) for i in range(m) )
-        return sum( P(x).inner_product(P(y)) for P in projections )
+    EXAMPLES:
 
+    This gives us fast characteristic polynomial computations in
+    product algebras, too::
 
-FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 
+        sage: J1 = JordanSpinEJA(2)
+        sage: J2 = RealSymmetricEJA(3)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.characteristic_polynomial_of().degree()
+        5
+        sage: J.rank()
+        5
 
-#     def projections(self):
-#         r"""
-#         Return a pair of projections onto this algebra's factors.
-
-#         SETUP::
-
-#             sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-#             ....:                                  ComplexHermitianEJA,
-#             ....:                                  DirectSumEJA)
-
-#         EXAMPLES::
-
-#             sage: J1 = JordanSpinEJA(2)
-#             sage: J2 = ComplexHermitianEJA(2)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (pi_left, pi_right) = J.projections()
-#             sage: J.one().to_vector()
-#             (1, 0, 1, 0, 0, 1)
-#             sage: pi_left(J.one()).to_vector()
-#             (1, 0)
-#             sage: pi_right(J.one()).to_vector()
-#             (1, 0, 0, 1)
-
-#         """
-#         (J1,J2) = self.factors()
-#         m = J1.dimension()
-#         n = J2.dimension()
-#         V_basis = self.vector_space().basis()
-#         # Need to specify the dimensions explicitly so that we don't
-#         # wind up with a zero-by-zero matrix when we want e.g. a
-#         # zero-by-two matrix (important for composing things).
-#         P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
-#         P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
-#         pi_left = FiniteDimensionalEJAOperator(self,J1,P1)
-#         pi_right = FiniteDimensionalEJAOperator(self,J2,P2)
-#         return (pi_left, pi_right)
-
-#     def inclusions(self):
-#         r"""
-#         Return the pair of inclusion maps from our factors into us.
-
-#         SETUP::
-
-#             sage: from mjo.eja.eja_algebra import (random_eja,
-#             ....:                                  JordanSpinEJA,
-#             ....:                                  RealSymmetricEJA,
-#             ....:                                  DirectSumEJA)
-
-#         EXAMPLES::
-
-#             sage: J1 = JordanSpinEJA(3)
-#             sage: J2 = RealSymmetricEJA(2)
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (iota_left, iota_right) = J.inclusions()
-#             sage: iota_left(J1.zero()) == J.zero()
-#             True
-#             sage: iota_right(J2.zero()) == J.zero()
-#             True
-#             sage: J1.one().to_vector()
-#             (1, 0, 0)
-#             sage: iota_left(J1.one()).to_vector()
-#             (1, 0, 0, 0, 0, 0)
-#             sage: J2.one().to_vector()
-#             (1, 0, 1)
-#             sage: iota_right(J2.one()).to_vector()
-#             (0, 0, 0, 1, 0, 1)
-#             sage: J.one().to_vector()
-#             (1, 0, 0, 1, 0, 1)
-
-#         TESTS:
-
-#         Composing a projection with the corresponding inclusion should
-#         produce the identity map, and mismatching them should produce
-#         the zero map::
-
-#             sage: set_random_seed()
-#             sage: J1 = random_eja()
-#             sage: J2 = random_eja()
-#             sage: J = DirectSumEJA(J1,J2)
-#             sage: (iota_left, iota_right) = J.inclusions()
-#             sage: (pi_left, pi_right) = J.projections()
-#             sage: pi_left*iota_left == J1.one().operator()
-#             True
-#             sage: pi_right*iota_right == J2.one().operator()
-#             True
-#             sage: (pi_left*iota_right).is_zero()
-#             True
-#             sage: (pi_right*iota_left).is_zero()
-#             True
-
-#         """
-#         (J1,J2) = self.factors()
-#         m = J1.dimension()
-#         n = J2.dimension()
-#         V_basis = self.vector_space().basis()
-#         # Need to specify the dimensions explicitly so that we don't
-#         # wind up with a zero-by-zero matrix when we want e.g. a
-#         # two-by-zero matrix (important for composing things).
-#         I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
-#         I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
-#         iota_left = FiniteDimensionalEJAOperator(J1,self,I1)
-#         iota_right = FiniteDimensionalEJAOperator(J2,self,I2)
-#         return (iota_left, iota_right)
+    """
+    def __init__(self, algebras, **kwargs):
+        CartesianProductEJA.__init__(self, algebras, **kwargs)
 
+        self._rational_algebra = None
+        if self.vector_space().base_field() is not QQ:
+            self._rational_algebra = cartesian_product([
+                r._rational_algebra for r in algebras
+            ])
 
 
+RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
 
 random_eja = ConcreteEJA.random_instance