]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add the AlbertEJA class.
[sage.d.git] / mjo / eja / eja_algebra.py
index 1cf6fa51dd2626df1e75dcaeab95fc743000130f..ca3df5fea55949225a51f8255a2c13a33c37d9f2 100644 (file)
@@ -32,22 +32,25 @@ for these simple algebras:
   * :class:`RealSymmetricEJA`
   * :class:`ComplexHermitianEJA`
   * :class:`QuaternionHermitianEJA`
+  * :class:`OctonionHermitianEJA`
 
-Missing from this list is the algebra of three-by-three octononion
-Hermitian matrices, as there is (as of yet) no implementation of the
-octonions in SageMath. In addition to these, we provide two other
-example constructions,
+In addition to these, we provide two other example constructions,
 
+  * :class:`JordanSpinEJA`
   * :class:`HadamardEJA`
+  * :class:`AlbertEJA`
   * :class:`TrivialEJA`
 
 The Jordan spin algebra is a bilinear form algebra where the bilinear
 form is the identity. The Hadamard EJA is simply a Cartesian product
-of one-dimensional spin algebras. And last but not least, the trivial
-EJA is exactly what you think. Cartesian products of these are also
-supported using the usual ``cartesian_product()`` function; as a
-result, we support (up to isomorphism) all Euclidean Jordan algebras
-that don't involve octonions.
+of one-dimensional spin algebras. The Albert EJA is simply a special
+case of the :class:`OctonionHermitianEJA` where the matrices are
+three-by-three and the resulting space has dimension 27. And
+last/least, the trivial EJA is exactly what you think it is; it could
+also be obtained by constructing a dimension-zero instance of any of
+the other algebras. Cartesian products of these are also supported
+using the usual ``cartesian_product()`` function; as a result, we
+support (up to isomorphism) all Euclidean Jordan algebras.
 
 SETUP::
 
@@ -59,8 +62,6 @@ EXAMPLES::
     Euclidean Jordan algebra of dimension...
 """
 
-from itertools import repeat
-
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
 from sage.categories.sets_cat import cartesian_product
@@ -1543,7 +1544,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
 class RationalBasisEJA(FiniteDimensionalEJA):
     r"""
-    New class for algebras whose supplied basis elements have all rational entries.
+    Algebras whose supplied basis elements have all rational entries.
 
     SETUP::
 
@@ -1656,7 +1657,7 @@ class RationalBasisEJA(FiniteDimensionalEJA):
         subs_dict = { X[i]: BX[i] for i in range(len(X)) }
         return tuple( a_i.subs(subs_dict) for a_i in a )
 
-class ConcreteEJA(RationalBasisEJA):
+class ConcreteEJA(FiniteDimensionalEJA):
     r"""
     A class for the Euclidean Jordan algebras that we know by name.
 
@@ -1733,11 +1734,9 @@ class MatrixEJA:
     def trace_inner_product(X,Y):
         r"""
         A trace inner-product for matrices that aren't embedded in the
-        reals.
+        reals. It takes MATRICES as arguments, not EJA elements.
         """
-        # We take the norm (absolute value) because Octonions() isn't
-        # smart enough yet to coerce its one() into the base field.
-        return (X*Y).trace().real().abs()
+        return (X*Y).trace().real()
 
 class RealEmbeddedMatrixEJA(MatrixEJA):
     @staticmethod
@@ -1833,7 +1832,7 @@ class RealEmbeddedMatrixEJA(MatrixEJA):
         # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
         return (X*Y).trace()/cls.dimension_over_reals()
 
-class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
+class RealSymmetricEJA(ConcreteEJA, RationalBasisEJA, MatrixEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -2115,7 +2114,7 @@ class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
         return matrix(F, n/d, elements)
 
 
-class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
+class ComplexHermitianEJA(ConcreteEJA, RationalBasisEJA, ComplexMatrixEJA):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -2417,7 +2416,9 @@ class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
         return matrix(Q, n/d, elements)
 
 
-class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
+class QuaternionHermitianEJA(ConcreteEJA,
+                             RationalBasisEJA,
+                             QuaternionMatrixEJA):
     r"""
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -2585,7 +2586,105 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
-class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
+class OctonionHermitianEJA(ConcreteEJA, MatrixEJA):
+    r"""
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
+        ....:                                  OctonionHermitianEJA)
+
+    EXAMPLES:
+
+    The 3-by-3 algebra satisfies the axioms of an EJA::
+
+        sage: OctonionHermitianEJA(3,                    # long time
+        ....:                      field=QQ,             # long time
+        ....:                      orthonormalize=False, # long time
+        ....:                      check_axioms=True)    # long time
+        Euclidean Jordan algebra of dimension 27 over Rational Field
+
+    After a change-of-basis, the 2-by-2 algebra has the same
+    multiplication table as the ten-dimensional Jordan spin algebra::
+
+        sage: b = OctonionHermitianEJA._denormalized_basis(2,QQ)
+        sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
+        sage: jp = OctonionHermitianEJA.jordan_product
+        sage: ip = OctonionHermitianEJA.trace_inner_product
+        sage: J = FiniteDimensionalEJA(basis,
+        ....:                          jp,
+        ....:                          ip,
+        ....:                          field=QQ,
+        ....:                          orthonormalize=False)
+        sage: J.multiplication_table()
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | *  || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
+        +====++====+====+====+====+====+====+====+====+====+====+
+        | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b1 || b1 | b0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b2 || b2 | 0  | b0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b3 || b3 | 0  | 0  | b0 | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b4 || b4 | 0  | 0  | 0  | b0 | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b5 || b5 | 0  | 0  | 0  | 0  | b0 | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b6 || b6 | 0  | 0  | 0  | 0  | 0  | b0 | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b7 || b7 | 0  | 0  | 0  | 0  | 0  | 0  | b0 | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b8 || b8 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | b0 | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b9 || b9 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | b0 |
+        +----++----+----+----+----+----+----+----+----+----+----+
+
+    TESTS:
+
+    We can actually construct the 27-dimensional Albert algebra,
+    and we get the right unit element if we recompute it::
+
+        sage: J = OctonionHermitianEJA(3,                    # long time
+        ....:                          field=QQ,             # long time
+        ....:                          orthonormalize=False) # long time
+        sage: J.one.clear_cache()                            # long time
+        sage: J.one()                                        # long time
+        b0 + b9 + b26
+        sage: J.one().to_matrix()                            # long time
+        +----+----+----+
+        | e0 | 0  | 0  |
+        +----+----+----+
+        | 0  | e0 | 0  |
+        +----+----+----+
+        | 0  | 0  | e0 |
+        +----+----+----+
+
+    The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
+    spin algebra, but just to be sure, we recompute its rank::
+
+        sage: J = OctonionHermitianEJA(2,                    # long time
+        ....:                          field=QQ,             # long time
+        ....:                          orthonormalize=False) # long time
+        sage: J.rank.clear_cache()                           # long time
+        sage: J.rank()                                       # long time
+        2
+
+    """
+    @staticmethod
+    def _max_random_instance_size():
+        r"""
+        The maximum rank of a random QuaternionHermitianEJA.
+        """
+        return 1 # Dimension 1
+
+    @classmethod
+    def random_instance(cls, **kwargs):
+        """
+        Return a random instance of this type of algebra.
+        """
+        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        return cls(n, **kwargs)
 
     def __init__(self, n, field=AA, **kwargs):
         if n > 3:
@@ -2599,6 +2698,7 @@ class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
         super().__init__(self._denormalized_basis(n,field),
                          self.jordan_product,
                          self.trace_inner_product,
+                         field=field,
                          **kwargs)
 
         # TODO: this could be factored out somehow, but is left here
@@ -2621,7 +2721,7 @@ class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
 
         EXAMPLES::
 
-            sage: B = OctonionHermitianEJA._denormalized_basis(3)
+            sage: B = OctonionHermitianEJA._denormalized_basis(3,QQ)
             sage: all( M.is_hermitian() for M in B )
             True
             sage: len(B)
@@ -2652,8 +2752,49 @@ class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
 
         return tuple( basis )
 
+    @staticmethod
+    def trace_inner_product(X,Y):
+        r"""
+        The octonions don't know that the reals are embedded in them,
+        so we have to take the e0 component ourselves.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import OctonionHermitianEJA
+
+        TESTS::
+
+            sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: I = J.one().to_matrix()
+            sage: J.trace_inner_product(I, -I)
+            -2
+
+        """
+        return (X*Y).trace().real().coefficient(0)
+
+
+class AlbertEJA(OctonionHermitianEJA):
+    r"""
+    The Albert algebra is the algebra of three-by-three Hermitian
+    matrices whose entries are octonions.
+
+    SETUP::
+
+        from mjo.eja.eja_algebra import AlbertEJA
+
+    EXAMPLES::
+
+        sage: AlbertEJA(field=QQ, orthonormalize=False)
+        Euclidean Jordan algebra of dimension 27 over Rational Field
+        sage: AlbertEJA() # long time
+        Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
 
-class HadamardEJA(ConcreteEJA):
+    """
+    def __init__(self, *args, **kwargs):
+        super().__init__(3, *args, **kwargs)
+
+
+class HadamardEJA(ConcreteEJA, RationalBasisEJA):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
@@ -2745,7 +2886,7 @@ class HadamardEJA(ConcreteEJA):
         return cls(n, **kwargs)
 
 
-class BilinearFormEJA(ConcreteEJA):
+class BilinearFormEJA(ConcreteEJA, RationalBasisEJA):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the half-trace inner product and jordan product ``x*y =
@@ -2993,7 +3134,7 @@ class JordanSpinEJA(BilinearFormEJA):
         return cls(n, **kwargs)
 
 
-class TrivialEJA(ConcreteEJA):
+class TrivialEJA(ConcreteEJA, RationalBasisEJA):
     """
     The trivial Euclidean Jordan algebra consisting of only a zero element.
 
@@ -3278,9 +3419,17 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         Return the space that our matrix basis lives in as a Cartesian
         product.
 
+        We don't simply use the ``cartesian_product()`` functor here
+        because it acts differently on SageMath MatrixSpaces and our
+        custom MatrixAlgebras, which are CombinatorialFreeModules. We
+        always want the result to be represented (and indexed) as
+        an ordered tuple.
+
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  OctonionHermitianEJA,
             ....:                                  RealSymmetricEJA)
 
         EXAMPLES::
@@ -3293,10 +3442,44 @@ class CartesianProductEJA(FiniteDimensionalEJA):
             matrices over Algebraic Real Field, Full MatrixSpace of 2
             by 2 dense matrices over Algebraic Real Field)
 
+        ::
+
+            sage: J1 = ComplexHermitianEJA(1)
+            sage: J2 = ComplexHermitianEJA(1)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.one().to_matrix()[0]
+            [1 0]
+            [0 1]
+            sage: J.one().to_matrix()[1]
+            [1 0]
+            [0 1]
+
+        ::
+
+            sage: J1 = OctonionHermitianEJA(1)
+            sage: J2 = OctonionHermitianEJA(1)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.one().to_matrix()[0]
+            +----+
+            | e0 |
+            +----+
+            sage: J.one().to_matrix()[1]
+            +----+
+            | e0 |
+            +----+
+
         """
-        from sage.categories.cartesian_product import cartesian_product
-        return cartesian_product( [J.matrix_space()
-                                   for J in self.cartesian_factors()] )
+        scalars = self.cartesian_factor(0).base_ring()
+
+        # This category isn't perfect, but is good enough for what we
+        # need to do.
+        cat = MagmaticAlgebras(scalars).FiniteDimensional().WithBasis()
+        cat = cat.Unital().CartesianProducts()
+        factors = tuple( J.matrix_space() for J in self.cartesian_factors() )
+
+        from sage.sets.cartesian_product import CartesianProduct
+        return CartesianProduct(factors, cat)
+
 
     @cached_method
     def cartesian_projection(self, i):
@@ -3498,7 +3681,9 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA,
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+        sage: from mjo.eja.eja_algebra import (HadamardEJA,
+        ....:                                  JordanSpinEJA,
+        ....:                                  OctonionHermitianEJA,
         ....:                                  RealSymmetricEJA)
 
     EXAMPLES:
@@ -3515,15 +3700,32 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA,
         sage: J.rank()
         5
 
+    TESTS:
+
+    The ``cartesian_product()`` function only uses the first factor to
+    decide where the result will live; thus we have to be careful to
+    check that all factors do indeed have a `_rational_algebra` member
+    before we try to access it::
+
+        sage: J1 = OctonionHermitianEJA(1) # no rational basis
+        sage: J2 = HadamardEJA(2)
+        sage: cartesian_product([J1,J2])
+        Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+        (+) Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
+        sage: cartesian_product([J2,J1])
+        Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
+        (+) Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+
     """
     def __init__(self, algebras, **kwargs):
         CartesianProductEJA.__init__(self, algebras, **kwargs)
 
         self._rational_algebra = None
         if self.vector_space().base_field() is not QQ:
-            self._rational_algebra = cartesian_product([
-                r._rational_algebra for r in algebras
-            ])
+            if all( hasattr(r, "_rational_algebra") for r in algebras ):
+                self._rational_algebra = cartesian_product([
+                    r._rational_algebra for r in algebras
+                ])
 
 
 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA