]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add some more octonion tests.
[sage.d.git] / mjo / eja / eja_algebra.py
index 4d0c802c38c8320a8f10f8faeb50678a85d84e95..afe0a677aaafd9ddf67355ed979d5ef023beb9c0 100644 (file)
@@ -1725,6 +1725,21 @@ class ConcreteEJA(RationalBasisEJA):
 
 
 class MatrixEJA:
+    @staticmethod
+    def jordan_product(X,Y):
+        return (X*Y + Y*X)/2
+
+    @staticmethod
+    def trace_inner_product(X,Y):
+        r"""
+        A trace inner-product for matrices that aren't embedded in the
+        reals.
+        """
+        # We take the norm (absolute value) because Octonions() isn't
+        # smart enough yet to coerce its one() into the base field.
+        return (X*Y).trace().real().abs()
+
+class RealEmbeddedMatrixEJA(MatrixEJA):
     @staticmethod
     def dimension_over_reals():
         r"""
@@ -1770,9 +1785,6 @@ class MatrixEJA:
             raise ValueError("the matrix 'M' must be a real embedding")
         return M
 
-    @staticmethod
-    def jordan_product(X,Y):
-        return (X*Y + Y*X)/2
 
     @classmethod
     def trace_inner_product(cls,X,Y):
@@ -1781,29 +1793,11 @@ class MatrixEJA:
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-            ....:                                  ComplexHermitianEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
             ....:                                  QuaternionHermitianEJA)
 
         EXAMPLES::
 
-        This gives the same answer as it would if we computed the trace
-        from the unembedded (original) matrices::
-
-            sage: set_random_seed()
-            sage: J = RealSymmetricEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = J.real_unembed(Xe)
-            sage: Y = J.real_unembed(Ye)
-            sage: expected = (X*Y).trace()
-            sage: actual = J.trace_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
-
-        ::
-
             sage: set_random_seed()
             sage: J = ComplexHermitianEJA.random_instance()
             sage: x,y = J.random_elements(2)
@@ -1839,14 +1833,7 @@ class MatrixEJA:
         # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
         return (X*Y).trace()/cls.dimension_over_reals()
 
-
-class RealMatrixEJA(MatrixEJA):
-    @staticmethod
-    def dimension_over_reals():
-        return 1
-
-
-class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
+class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1975,12 +1962,12 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
-        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        idV = self.matrix_space().one()
         self.one.set_cache(self(idV))
 
 
 
-class ComplexMatrixEJA(MatrixEJA):
+class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
     # A manual dictionary-cache for the complex_extension() method,
     # since apparently @classmethods can't also be @cached_methods.
     _complex_extension = {}
@@ -2282,7 +2269,7 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
-class QuaternionMatrixEJA(MatrixEJA):
+class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
 
     # A manual dictionary-cache for the quaternion_extension() method,
     # since apparently @classmethods can't also be @cached_methods.
@@ -2598,6 +2585,156 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
+class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
+    r"""
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
+        ....:                                  OctonionHermitianEJA)
+
+    EXAMPLES:
+
+    The 3-by-3 algebra satisfies the axioms of an EJA::
+
+        sage: OctonionHermitianEJA(3,                    # long time
+        ....:                      field=QQ,             # long time
+        ....:                      orthonormalize=False, # long time
+        ....:                      check_axioms=True)    # long time
+        Euclidean Jordan algebra of dimension 27 over Rational Field
+
+    After a change-of-basis, the 2-by-2 algebra has the same
+    multiplication table as the ten-dimensional Jordan spin algebra::
+
+        sage: b = OctonionHermitianEJA._denormalized_basis(2,QQ)
+        sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
+        sage: jp = OctonionHermitianEJA.jordan_product
+        sage: ip = OctonionHermitianEJA.trace_inner_product
+        sage: J = FiniteDimensionalEJA(basis,
+        ....:                          jp,
+        ....:                          ip,
+        ....:                          field=QQ,
+        ....:                          orthonormalize=False)
+        sage: J.multiplication_table()
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | *  || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
+        +====++====+====+====+====+====+====+====+====+====+====+
+        | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b1 || b1 | b0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b2 || b2 | 0  | b0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b3 || b3 | 0  | 0  | b0 | 0  | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b4 || b4 | 0  | 0  | 0  | b0 | 0  | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b5 || b5 | 0  | 0  | 0  | 0  | b0 | 0  | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b6 || b6 | 0  | 0  | 0  | 0  | 0  | b0 | 0  | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b7 || b7 | 0  | 0  | 0  | 0  | 0  | 0  | b0 | 0  | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b8 || b8 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | b0 | 0  |
+        +----++----+----+----+----+----+----+----+----+----+----+
+        | b9 || b9 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | b0 |
+        +----++----+----+----+----+----+----+----+----+----+----+
+
+    TESTS:
+
+    We can actually construct the 27-dimensional Albert algebra,
+    and we get the right unit element if we recompute it::
+
+        sage: J = OctonionHermitianEJA(3,                    # long time
+        ....:                          field=QQ,             # long time
+        ....:                          orthonormalize=False) # long time
+        sage: J.one.clear_cache()                            # long time
+        sage: J.one()                                        # long time
+        b0 + b9 + b26
+        sage: J.one().to_matrix()                            # long time
+        +----+----+----+
+        | e0 | 0  | 0  |
+        +----+----+----+
+        | 0  | e0 | 0  |
+        +----+----+----+
+        | 0  | 0  | e0 |
+        +----+----+----+
+
+    The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
+    spin algebra, but just to be sure, we recompute its rank::
+
+        sage: J = OctonionHermitianEJA(2,                    # long time
+        ....:                          field=QQ,             # long time
+        ....:                          orthonormalize=False) # long time
+        sage: J.rank.clear_cache()                           # long time
+        sage: J.rank()                                       # long time
+        2
+    """
+    def __init__(self, n, field=AA, **kwargs):
+        if n > 3:
+            # Otherwise we don't get an EJA.
+            raise ValueError("n cannot exceed 3")
+
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         **kwargs)
+
+        # TODO: this could be factored out somehow, but is left here
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
+        self.rank.set_cache(n)
+        idV = self.matrix_space().one()
+        self.one.set_cache(self(idV))
+
+
+    @classmethod
+    def _denormalized_basis(cls, n, field):
+        """
+        Returns a basis for the space of octonion Hermitian n-by-n
+        matrices.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import OctonionHermitianEJA
+
+        EXAMPLES::
+
+            sage: B = OctonionHermitianEJA._denormalized_basis(3,QQ)
+            sage: all( M.is_hermitian() for M in B )
+            True
+            sage: len(B)
+            27
+
+        """
+        from mjo.octonions import OctonionMatrixAlgebra
+        MS = OctonionMatrixAlgebra(n, scalars=field)
+        es = MS.entry_algebra().gens()
+
+        basis = []
+        for i in range(n):
+            for j in range(i+1):
+                if i == j:
+                    E_ii = MS.monomial( (i,j,es[0]) )
+                    basis.append(E_ii)
+                else:
+                    for e in es:
+                        E_ij  = MS.monomial( (i,j,e)             )
+                        ec = e.conjugate()
+                        # If the conjugate has a negative sign in front
+                        # of it, (j,i,ec) won't be a monomial!
+                        if (j,i,ec) in MS.indices():
+                            E_ij += MS.monomial( (j,i,ec) )
+                        else:
+                            E_ij -= MS.monomial( (j,i,-ec) )
+                        basis.append(E_ij)
+
+        return tuple( basis )
+
 
 class HadamardEJA(ConcreteEJA):
     """