]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add more introductory documentation.
[sage.d.git] / mjo / eja / eja_algebra.py
index a2adbb2bed47499aea53b38fe175547b887fb2a9..8b37a83602ef9b00b5a14c55785c2163b44df32b 100644 (file)
@@ -52,6 +52,98 @@ the other algebras. Cartesian products of these are also supported
 using the usual ``cartesian_product()`` function; as a result, we
 support (up to isomorphism) all Euclidean Jordan algebras.
 
+At a minimum, the following are required to construct a Euclidean
+Jordan algebra:
+
+  * A basis of matrices, column vectors, or MatrixAlgebra elements
+  * A Jordan product defined on the basis
+  * Its inner product defined on the basis
+
+The real numbers form a Euclidean Jordan algebra when both the Jordan
+and inner products are the usual multiplication. We use this as our
+example, and demonstrate a few ways to construct an EJA.
+
+First, we can use one-by-one SageMath matrices with algebraic real
+entries to represent real numbers. We define the Jordan and inner
+products to be essentially real-number multiplication, with the only
+difference being that the Jordan product again returns a one-by-one
+matrix, whereas the inner product must return a scalar. Our basis for
+the one-by-one matrices is of course the set consisting of a single
+matrix with its sole entry non-zero::
+
+    sage: from mjo.eja.eja_algebra import FiniteDimensionalEJA
+    sage: jp = lambda X,Y: X*Y
+    sage: ip = lambda X,Y: X[0,0]*Y[0,0]
+    sage: b1 = matrix(AA, [[1]])
+    sage: J1 = FiniteDimensionalEJA((b1,), jp, ip)
+    sage: J1
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+
+In fact, any positive scalar multiple of that inner-product would work::
+
+    sage: ip2 = lambda X,Y: 16*ip(X,Y)
+    sage: J2 = FiniteDimensionalEJA((b1,), jp, ip2)
+    sage: J2
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+
+But beware that your basis will be orthonormalized _with respect to the
+given inner-product_ unless you pass ``orthonormalize=False`` to the
+constructor. For example::
+
+    sage: J3 = FiniteDimensionalEJA((b1,), jp, ip2, orthonormalize=False)
+    sage: J3
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+
+To see the difference, you can take the first and only basis element
+of the resulting algebra, and ask for it to be converted back into
+matrix form::
+
+    sage: J1.basis()[0].to_matrix()
+    [1]
+    sage: J2.basis()[0].to_matrix()
+    [1/4]
+    sage: J3.basis()[0].to_matrix()
+    [1]
+
+Since square roots are used in that process, the default scalar field
+that we use is the field of algebraic real numbers, ``AA``. You can
+also Use rational numbers, but only if you either pass
+``orthonormalize=False`` or know that orthonormalizing your basis
+won't stray beyond the rational numbers. The example above would
+have worked only because ``sqrt(16) == 4`` is rational.
+
+Another option for your basis is to use elemebts of a
+:class:`MatrixAlgebra`::
+
+    sage: from mjo.matrix_algebra import MatrixAlgebra
+    sage: A = MatrixAlgebra(1,AA,AA)
+    sage: J4 = FiniteDimensionalEJA(A.gens(), jp, ip)
+    sage: J4
+    Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
+    sage: J4.basis()[0].to_matrix()
+    +---+
+    | 1 |
+    +---+
+
+An easier way to view the entire EJA basis in its original (but
+perhaps orthonormalized) matrix form is to use the ``matrix_basis``
+method::
+
+    sage: J4.matrix_basis()
+    (+---+
+    | 1 |
+     +---+,)
+
+In particular, a :class:`MatrixAlgebra` is needed to work around the
+fact that matrices in SageMath must have entries in the same
+(commutative and associative) ring as its scalars. There are many
+Euclidean Jordan algebras whose elements are matrices that violate
+those assumptions. The complex, quaternion, and octonion Hermitian
+matrices all have entries in a ring (the complex numbers, quaternions,
+or octonions...) that differs from the algebra's scalar ring (the real
+numbers). Quaternions are also non-commutative; the octonions are
+neither commutative nor associative.
+
 SETUP::
 
     sage: from mjo.eja.eja_algebra import random_eja
@@ -1715,25 +1807,35 @@ class ConcreteEJA(FiniteDimensionalEJA):
     """
 
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_dimension():
+        r"""
+        The maximum dimension of any random instance. Ten dimensions seems
+        to be about the point where everything takes a turn for the
+        worse. And dimension ten (but not nine) allows the 4-by-4 real
+        Hermitian matrices, the 2-by-2 quaternion Hermitian matrices,
+        and the 2-by-2 octonion Hermitian matrices.
+        """
+        return 10
+
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
         """
         Return an integer "size" that is an upper bound on the size of
-        this algebra when it is used in a random test
-        case. Unfortunately, the term "size" is ambiguous -- when
-        dealing with `R^n` under either the Hadamard or Jordan spin
-        product, the "size" refers to the dimension `n`. When dealing
-        with a matrix algebra (real symmetric or complex/quaternion
-        Hermitian), it refers to the size of the matrix, which is far
-        less than the dimension of the underlying vector space.
+        this algebra when it is used in a random test case. This size
+        (which can be passed to the algebra's constructor) is itself
+        based on the ``max_dimension`` parameter.
 
         This method must be implemented in each subclass.
         """
         raise NotImplementedError
 
     @classmethod
-    def random_instance(cls, *args, **kwargs):
+    def random_instance(cls, max_dimension=None, *args, **kwargs):
         """
-        Return a random instance of this type of algebra.
+        Return a random instance of this type of algebra whose dimension
+        is less than or equal to ``max_dimension``. If the dimension bound
+        is omitted, then the ``_max_random_instance_dimension()`` is used
+        to get a suitable bound.
 
         This method should be implemented in each subclass.
         """
@@ -1937,8 +2039,8 @@ class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
     The dimension of this algebra is `(n^2 + n) / 2`::
 
         sage: set_random_seed()
-        sage: n_max = RealSymmetricEJA._max_random_instance_size()
-        sage: n = ZZ.random_element(1, n_max)
+        sage: d = RealSymmetricEJA._max_random_instance_dimension()
+        sage: n = RealSymmetricEJA._max_random_instance_size(d)
         sage: J = RealSymmetricEJA(n)
         sage: J.dimension() == (n^2 + n)/2
         True
@@ -1969,15 +2071,20 @@ class RealSymmetricEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
 
     """
     @staticmethod
-    def _max_random_instance_size():
-        return 4 # Dimension 10
+    def _max_random_instance_size(max_dimension):
+        # Obtained by solving d = (n^2 + n)/2.
+        # The ZZ-int-ZZ thing is just "floor."
+        return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/2 - 1/2))
 
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if max_dimension is None:
+            max_dimension = cls._max_random_instance_dimension()
+        max_size = cls._max_random_instance_size(max_dimension) + 1
+        n = ZZ.random_element(max_size)
         return cls(n, **kwargs)
 
     def __init__(self, n, field=AA, **kwargs):
@@ -2039,8 +2146,8 @@ class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
     The dimension of this algebra is `n^2`::
 
         sage: set_random_seed()
-        sage: n_max = ComplexHermitianEJA._max_random_instance_size()
-        sage: n = ZZ.random_element(1, n_max)
+        sage: d = ComplexHermitianEJA._max_random_instance_dimension()
+        sage: n = ComplexHermitianEJA._max_random_instance_size(d)
         sage: J = ComplexHermitianEJA(n)
         sage: J.dimension() == n^2
         True
@@ -2068,6 +2175,7 @@ class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
 
         sage: ComplexHermitianEJA(0)
         Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
+
     """
     def __init__(self, n, field=AA, **kwargs):
         # We know this is a valid EJA, but will double-check
@@ -2087,15 +2195,19 @@ class ComplexHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
                 self._rational_algebra._charpoly_coefficients.set_cache(a)
 
     @staticmethod
-    def _max_random_instance_size():
-        return 3 # Dimension 9
+    def _max_random_instance_size(max_dimension):
+        # Obtained by solving d = n^2.
+        # The ZZ-int-ZZ thing is just "floor."
+        return ZZ(int(ZZ(max_dimension).sqrt()))
 
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if max_dimension is None:
+            max_dimension = cls._max_random_instance_dimension()
+        n = ZZ.random_element(cls._max_random_instance_size(max_dimension) + 1)
         return cls(n, **kwargs)
 
 
@@ -2125,8 +2237,8 @@ class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
     The dimension of this algebra is `2*n^2 - n`::
 
         sage: set_random_seed()
-        sage: n_max = QuaternionHermitianEJA._max_random_instance_size()
-        sage: n = ZZ.random_element(1, n_max)
+        sage: d = QuaternionHermitianEJA._max_random_instance_dimension()
+        sage: n = QuaternionHermitianEJA._max_random_instance_size(d)
         sage: J = QuaternionHermitianEJA(n)
         sage: J.dimension() == 2*(n^2) - n
         True
@@ -2176,18 +2288,22 @@ class QuaternionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
 
 
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_size(max_dimension):
         r"""
         The maximum rank of a random QuaternionHermitianEJA.
         """
-        return 2 # Dimension 6
+        # Obtained by solving d = 2n^2 - n.
+        # The ZZ-int-ZZ thing is just "floor."
+        return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
 
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if max_dimension is None:
+            max_dimension = cls._max_random_instance_dimension()
+        n = ZZ.random_element(cls._max_random_instance_size(max_dimension) + 1)
         return cls(n, **kwargs)
 
 class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
@@ -2278,18 +2394,29 @@ class OctonionHermitianEJA(MatrixEJA, RationalBasisEJA, ConcreteEJA):
 
     """
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_size(max_dimension):
         r"""
         The maximum rank of a random QuaternionHermitianEJA.
         """
-        return 1 # Dimension 1
+        # There's certainly a formula for this, but with only four
+        # cases to worry about, I'm not that motivated to derive it.
+        if max_dimension >= 27:
+            return 3
+        elif max_dimension >= 10:
+            return 2
+        elif max_dimension >= 1:
+            return 1
+        else:
+            return 0
 
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if max_dimension is None:
+            max_dimension = cls._max_random_instance_dimension()
+        n = ZZ.random_element(cls._max_random_instance_size(max_dimension) + 1)
         return cls(n, **kwargs)
 
     def __init__(self, n, field=AA, **kwargs):
@@ -2410,18 +2537,28 @@ class HadamardEJA(RationalBasisEJA, ConcreteEJA):
         self.one.set_cache( self.sum(self.gens()) )
 
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_dimension():
         r"""
-        The maximum dimension of a random HadamardEJA.
+        There's no reason to go higher than five here. That's
+        enough to get the point across.
         """
         return 5
 
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
+        r"""
+        The maximum size (=dimension) of a random HadamardEJA.
+        """
+        return max_dimension
+
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if max_dimension is None:
+            max_dimension = cls._max_random_instance_dimension()
+        n = ZZ.random_element(cls._max_random_instance_size(max_dimension) + 1)
         return cls(n, **kwargs)
 
 
@@ -2561,18 +2698,28 @@ class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
             self.one.set_cache( self.monomial(0) )
 
     @staticmethod
-    def _max_random_instance_size():
+    def _max_random_instance_dimension():
         r"""
-        The maximum dimension of a random BilinearFormEJA.
+        There's no reason to go higher than five here. That's
+        enough to get the point across.
         """
         return 5
 
+    @staticmethod
+    def _max_random_instance_size(max_dimension):
+        r"""
+        The maximum size (=dimension) of a random BilinearFormEJA.
+        """
+        return max_dimension
+
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, **kwargs):
         """
         Return a random instance of this algebra.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if max_dimension is None:
+            max_dimension = cls._max_random_instance_dimension()
+        n = ZZ.random_element(cls._max_random_instance_size(max_dimension) + 1)
         if n.is_zero():
             B = matrix.identity(ZZ, n)
             return cls(B, **kwargs)
@@ -2655,21 +2802,16 @@ class JordanSpinEJA(BilinearFormEJA):
         # can pass in a field!
         super().__init__(B, *args, **kwargs)
 
-    @staticmethod
-    def _max_random_instance_size():
-        r"""
-        The maximum dimension of a random JordanSpinEJA.
-        """
-        return 5
-
     @classmethod
-    def random_instance(cls, **kwargs):
+    def random_instance(cls, max_dimension=None, **kwargs):
         """
         Return a random instance of this type of algebra.
 
         Needed here to override the implementation for ``BilinearFormEJA``.
         """
-        n = ZZ.random_element(cls._max_random_instance_size() + 1)
+        if max_dimension is None:
+            max_dimension = cls._max_random_instance_dimension()
+        n = ZZ.random_element(cls._max_random_instance_size(max_dimension) + 1)
         return cls(n, **kwargs)
 
 
@@ -3273,15 +3415,23 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA,
 
 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
 
-def random_eja(*args, **kwargs):
-    J1 = ConcreteEJA.random_instance(*args, **kwargs)
+def random_eja(max_dimension=None, *args, **kwargs):
+    # Use the ConcreteEJA default as the total upper bound (regardless
+    # of any whether or not any individual factors set a lower limit).
+    if max_dimension is None:
+        max_dimension = ConcreteEJA._max_random_instance_dimension()
+    J1 = ConcreteEJA.random_instance(max_dimension, *args, **kwargs)
 
-    # This might make Cartesian products appear roughly as often as
-    # any other ConcreteEJA.
-    if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
-        # Use random_eja() again so we can get more than two factors.
-        J2 = random_eja(*args, **kwargs)
-        J = cartesian_product([J1,J2])
-        return J
-    else:
+
+    # Roll the dice to see if we attempt a Cartesian product.
+    dice_roll = ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1)
+    new_max_dimension = max_dimension - J1.dimension()
+    if new_max_dimension == 0 or dice_roll != 0:
+        # If it's already as big as we're willing to tolerate, just
+        # return it and don't worry about Cartesian products.
         return J1
+    else:
+        # Use random_eja() again so we can get more than two factors
+        # if the sub-call also Decides on a cartesian product.
+        J2 = random_eja(new_max_dimension, *args, **kwargs)
+        return cartesian_product([J1,J2])