]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: factor out a class for real-embedded matrices.
[sage.d.git] / mjo / eja / eja_algebra.py
index af7d059631b1706227e59d54952cfec552ddabb1..5bf597565b2ae292032c3f0a532763d7889cd2a8 100644 (file)
@@ -64,8 +64,7 @@ from itertools import repeat
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
 from sage.categories.sets_cat import cartesian_product
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
 from sage.categories.sets_cat import cartesian_product
-from sage.combinat.free_module import (CombinatorialFreeModule,
-                                       CombinatorialFreeModule_CartesianProduct)
+from sage.combinat.free_module import CombinatorialFreeModule
 from sage.matrix.constructor import matrix
 from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
 from sage.matrix.constructor import matrix
 from sage.matrix.matrix_space import MatrixSpace
 from sage.misc.cachefunc import cached_method
@@ -112,6 +111,23 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         generally rules out using the rationals as your ``field``, but
         is required for spectral decompositions.
 
         generally rules out using the rationals as your ``field``, but
         is required for spectral decompositions.
 
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import random_eja
+
+    TESTS:
+
+    We should compute that an element subalgebra is associative even
+    if we circumvent the element method::
+
+        sage: set_random_seed()
+        sage: J = random_eja(field=QQ,orthonormalize=False)
+        sage: x = J.random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize=False)
+        sage: basis = tuple(b.superalgebra_element() for b in A.basis())
+        sage: J.subalgebra(basis, orthonormalize=False).is_associative()
+        True
+
     """
     Element = FiniteDimensionalEJAElement
 
     """
     Element = FiniteDimensionalEJAElement
 
@@ -121,23 +137,13 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                  inner_product,
                  field=AA,
                  orthonormalize=True,
                  inner_product,
                  field=AA,
                  orthonormalize=True,
-                 associative=False,
+                 associative=None,
                  cartesian_product=False,
                  check_field=True,
                  check_axioms=True,
                  cartesian_product=False,
                  check_field=True,
                  check_axioms=True,
-                 prefix='e'):
-
-        # Keep track of whether or not the matrix basis consists of
-        # tuples, since we need special cases for them damned near
-        # everywhere.  This is INDEPENDENT of whether or not the
-        # algebra is a cartesian product, since a subalgebra of a
-        # cartesian product will have a basis of tuples, but will not
-        # in general itself be a cartesian product algebra.
-        self._matrix_basis_is_cartesian = False
+                 prefix="b"):
+
         n = len(basis)
         n = len(basis)
-        if n > 0:
-            if hasattr(basis[0], 'cartesian_factors'):
-                self._matrix_basis_is_cartesian = True
 
         if check_field:
             if not field.is_subring(RR):
 
         if check_field:
             if not field.is_subring(RR):
@@ -146,21 +152,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
                 # we've specified a real embedding.
                 raise ValueError("scalar field is not real")
 
                 # we've specified a real embedding.
                 raise ValueError("scalar field is not real")
 
-        # If the basis given to us wasn't over the field that it's
-        # supposed to be over, fix that. Or, you know, crash.
-        if not cartesian_product:
-            # The field for a cartesian product algebra comes from one
-            # of its factors and is the same for all factors, so
-            # there's no need to "reapply" it on product algebras.
-            if self._matrix_basis_is_cartesian:
-                # OK since if n == 0, the basis does not consist of tuples.
-                P = basis[0].parent()
-                basis = tuple( P(tuple(b_i.change_ring(field) for b_i in b))
-                               for b in basis )
-            else:
-                basis = tuple( b.change_ring(field) for b in basis )
-
-
         if check_axioms:
             # Check commutativity of the Jordan and inner-products.
             # This has to be done before we build the multiplication
         if check_axioms:
             # Check commutativity of the Jordan and inner-products.
             # This has to be done before we build the multiplication
@@ -180,11 +171,26 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         category = MagmaticAlgebras(field).FiniteDimensional()
         category = category.WithBasis().Unital().Commutative()
 
         category = MagmaticAlgebras(field).FiniteDimensional()
         category = category.WithBasis().Unital().Commutative()
 
+        if associative is None:
+            # We should figure it out. As with check_axioms, we have to do
+            # this without the help of the _jordan_product_is_associative()
+            # method because we need to know the category before we
+            # initialize the algebra.
+            associative = all( jordan_product(jordan_product(bi,bj),bk)
+                               ==
+                               jordan_product(bi,jordan_product(bj,bk))
+                               for bi in basis
+                               for bj in basis
+                               for bk in basis)
+
         if associative:
             # Element subalgebras can take advantage of this.
             category = category.Associative()
         if cartesian_product:
         if associative:
             # Element subalgebras can take advantage of this.
             category = category.Associative()
         if cartesian_product:
-            category = category.CartesianProducts()
+            # Use join() here because otherwise we only get the
+            # "Cartesian product of..." and not the things themselves.
+            category = category.join([category,
+                                      category.CartesianProducts()])
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
 
         # Call the superclass constructor so that we can use its from_vector()
         # method to build our multiplication table.
@@ -199,7 +205,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         # ambient vector space V that our (vectorized) basis lives in,
         # as well as a subspace W of V spanned by those (vectorized)
         # basis elements. The W-coordinates are the coefficients that
         # ambient vector space V that our (vectorized) basis lives in,
         # as well as a subspace W of V spanned by those (vectorized)
         # basis elements. The W-coordinates are the coefficients that
-        # we see in things like x = 1*e1 + 2*e2.
+        # we see in things like x = 1*b1 + 2*b2.
         vector_basis = basis
 
         degree = 0
         vector_basis = basis
 
         degree = 0
@@ -326,16 +332,16 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: set_random_seed()
             sage: J = random_eja()
             sage: n = J.dimension()
             sage: set_random_seed()
             sage: J = random_eja()
             sage: n = J.dimension()
-            sage: ei = J.zero()
-            sage: ej = J.zero()
-            sage: ei_ej = J.zero()*J.zero()
+            sage: bi = J.zero()
+            sage: bj = J.zero()
+            sage: bi_bj = J.zero()*J.zero()
             sage: if n > 0:
             ....:     i = ZZ.random_element(n)
             ....:     j = ZZ.random_element(n)
             sage: if n > 0:
             ....:     i = ZZ.random_element(n)
             ....:     j = ZZ.random_element(n)
-            ....:     ei = J.gens()[i]
-            ....:     ej = J.gens()[j]
-            ....:     ei_ej = J.product_on_basis(i,j)
-            sage: ei*ej == ei_ej
+            ....:     bi = J.monomial(i)
+            ....:     bj = J.monomial(j)
+            ....:     bi_bj = J.product_on_basis(i,j)
+            sage: bi*bj == bi_bj
             True
 
         """
             True
 
         """
@@ -431,9 +437,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         this algebra was constructed with ``check_axioms=False`` and
         passed an invalid multiplication table.
         """
         this algebra was constructed with ``check_axioms=False`` and
         passed an invalid multiplication table.
         """
-        return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
-                    for i in range(self.dimension())
-                    for j in range(self.dimension()) )
+        return all( x*y == y*x for x in self.gens() for y in self.gens() )
 
     def _is_jordanian(self):
         r"""
 
     def _is_jordanian(self):
         r"""
@@ -446,12 +450,98 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         return ``True``, unless this algebra was constructed with
         ``check_axioms=False`` and passed an invalid multiplication table.
         """
         return ``True``, unless this algebra was constructed with
         ``check_axioms=False`` and passed an invalid multiplication table.
         """
-        return all( (self.gens()[i]**2)*(self.gens()[i]*self.gens()[j])
+        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
                     ==
                     ==
-                    (self.gens()[i])*((self.gens()[i]**2)*self.gens()[j])
+                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
                     for i in range(self.dimension())
                     for j in range(self.dimension()) )
 
                     for i in range(self.dimension())
                     for j in range(self.dimension()) )
 
+    def _jordan_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's Jordan product is
+        associative; that is, whether or not `x*(y*z) = (x*y)*z`
+        for all `x,y,x`.
+
+        This method should agree with :meth:`is_associative` unless
+        you lied about the value of the ``associative`` parameter
+        when you constructed the algebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA)
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(4, orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = QuaternionHermitianEJA(2)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
+            True
+
+        TESTS:
+
+        The values we've presupplied to the constructors agree with
+        the computation::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.is_associative() == J._jordan_product_is_associative()
+            True
+
+        """
+        R = self.base_ring()
+
+        # Used to check whether or not something is zero.
+        epsilon = R.zero()
+        if not R.is_exact():
+            # I don't know of any examples that make this magnitude
+            # necessary because I don't know how to make an
+            # associative algebra when the element subalgebra
+            # construction is unreliable (as it is over RDF; we can't
+            # find the degree of an element because we can't compute
+            # the rank of a matrix). But even multiplication of floats
+            # is non-associative, so *some* epsilon is needed... let's
+            # just take the one from _inner_product_is_associative?
+            epsilon = 1e-15
+
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y)*z - x*(y*z)
+
+                    if diff.norm() > epsilon:
+                        return False
+
+        return True
+
     def _inner_product_is_associative(self):
         r"""
         Return whether or not this algebra's inner product `B` is
     def _inner_product_is_associative(self):
         r"""
         Return whether or not this algebra's inner product `B` is
@@ -473,9 +563,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         for i in range(self.dimension()):
             for j in range(self.dimension()):
                 for k in range(self.dimension()):
         for i in range(self.dimension()):
             for j in range(self.dimension()):
                 for k in range(self.dimension()):
-                    x = self.gens()[i]
-                    y = self.gens()[j]
-                    z = self.gens()[k]
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
                     diff = (x*y).inner_product(z) - x.inner_product(y*z)
 
                     if diff.abs() > epsilon:
                     diff = (x*y).inner_product(z) - x.inner_product(y*z)
 
                     if diff.abs() > epsilon:
@@ -493,7 +583,8 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         SETUP::
 
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
             ....:                                  RealSymmetricEJA)
 
             ....:                                  HadamardEJA,
             ....:                                  RealSymmetricEJA)
 
@@ -522,22 +613,17 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: J2 = RealSymmetricEJA(2)
             sage: J = cartesian_product([J1,J2])
             sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
             sage: J2 = RealSymmetricEJA(2)
             sage: J = cartesian_product([J1,J2])
             sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
-            e(0, 1) + e(1, 2)
+            b1 + b5
 
         TESTS:
 
 
         TESTS:
 
-        Ensure that we can convert any element of the two non-matrix
-        simple algebras (whose matrix representations are columns)
-        back and forth faithfully::
+        Ensure that we can convert any element back and forth
+        faithfully between its matrix and algebra representations::
 
             sage: set_random_seed()
 
             sage: set_random_seed()
-            sage: J = HadamardEJA.random_instance()
-            sage: x = J.random_element()
-            sage: J(x.to_vector().column()) == x
-            True
-            sage: J = JordanSpinEJA.random_instance()
+            sage: J = random_eja()
             sage: x = J.random_element()
             sage: x = J.random_element()
-            sage: J(x.to_vector().column()) == x
+            sage: J(x.to_matrix()) == x
             True
 
         We cannot coerce elements between algebras just because their
             True
 
         We cannot coerce elements between algebras just because their
@@ -553,7 +639,6 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             Traceback (most recent call last):
             ...
             ValueError: not an element of this algebra
             Traceback (most recent call last):
             ...
             ValueError: not an element of this algebra
-
         """
         msg = "not an element of this algebra"
         if elt in self.base_ring():
         """
         msg = "not an element of this algebra"
         if elt in self.base_ring():
@@ -803,15 +888,15 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             sage: J = JordanSpinEJA(4)
             sage: J.multiplication_table()
             +----++----+----+----+----+
             sage: J = JordanSpinEJA(4)
             sage: J.multiplication_table()
             +----++----+----+----+----+
-            | *  || e0 | e1 | e2 | e3 |
+            | *  || b0 | b1 | b2 | b3 |
             +====++====+====+====+====+
             +====++====+====+====+====+
-            | e0 || e0 | e1 | e2 | e3 |
+            | b0 || b0 | b1 | b2 | b3 |
             +----++----+----+----+----+
             +----++----+----+----+----+
-            | e1 || e1 | e0 | 0  | 0  |
+            | b1 || b1 | b0 | 0  | 0  |
             +----++----+----+----+----+
             +----++----+----+----+----+
-            | e2 || e2 | 0  | e0 | 0  |
+            | b2 || b2 | 0  | b0 | 0  |
             +----++----+----+----+----+
             +----++----+----+----+----+
-            | e3 || e3 | 0  | 0  | e0 |
+            | b3 || b3 | 0  | 0  | b0 |
             +----++----+----+----+----+
 
         """
             +----++----+----+----+----+
 
         """
@@ -821,7 +906,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
         # And to each subsequent row, prepend an entry that belongs to
         # the left-side "header column."
 
         # And to each subsequent row, prepend an entry that belongs to
         # the left-side "header column."
-        M += [ [self.gens()[i]] + [ self.product_on_basis(i,j)
+        M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
                                     for j in range(n) ]
                for i in range(n) ]
 
                                     for j in range(n) ]
                for i in range(n) ]
 
@@ -865,7 +950,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
-            Finite family {0: e0, 1: e1, 2: e2}
+            Finite family {0: b0, 1: b1, 2: b2}
             sage: J.matrix_basis()
             (
             [1 0]  [                  0 0.7071067811865475?]  [0 0]
             sage: J.matrix_basis()
             (
             [1 0]  [                  0 0.7071067811865475?]  [0 0]
@@ -876,7 +961,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
-            Finite family {0: e0, 1: e1}
+            Finite family {0: b0, 1: b1}
             sage: J.matrix_basis()
             (
             [1]  [0]
             sage: J.matrix_basis()
             (
             [1]  [0]
@@ -958,20 +1043,20 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
 
             sage: J = HadamardEJA(5)
             sage: J.one()
 
             sage: J = HadamardEJA(5)
             sage: J.one()
-            e0 + e1 + e2 + e3 + e4
+            b0 + b1 + b2 + b3 + b4
 
         The unit element in the Hadamard EJA is inherited in the
         subalgebras generated by its elements::
 
             sage: J = HadamardEJA(5)
             sage: J.one()
 
         The unit element in the Hadamard EJA is inherited in the
         subalgebras generated by its elements::
 
             sage: J = HadamardEJA(5)
             sage: J.one()
-            e0 + e1 + e2 + e3 + e4
+            b0 + b1 + b2 + b3 + b4
             sage: x = sum(J.gens())
             sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: A.one()
             sage: x = sum(J.gens())
             sage: A = x.subalgebra_generated_by(orthonormalize=False)
             sage: A.one()
-            f0
+            c0
             sage: A.one().superalgebra_element()
             sage: A.one().superalgebra_element()
-            e0 + e1 + e2 + e3 + e4
+            b0 + b1 + b2 + b3 + b4
 
         TESTS:
 
 
         TESTS:
 
@@ -1323,7 +1408,7 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
         def L_x_i_j(i,j):
             # From a result in my book, these are the entries of the
             # basis representation of L_x.
         def L_x_i_j(i,j):
             # From a result in my book, these are the entries of the
             # basis representation of L_x.
-            return sum( vars[k]*self.gens()[k].operator().matrix()[i,j]
+            return sum( vars[k]*self.monomial(k).operator().matrix()[i,j]
                         for k in range(n) )
 
         L_x = matrix(F, n, n, L_x_i_j)
                         for k in range(n) )
 
         L_x = matrix(F, n, n, L_x_i_j)
@@ -1492,6 +1577,13 @@ class RationalBasisEJA(FiniteDimensionalEJA):
             if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
                 raise TypeError("basis not rational")
 
             if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
                 raise TypeError("basis not rational")
 
+        super().__init__(basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         check_field=check_field,
+                         **kwargs)
+
         self._rational_algebra = None
         if field is not QQ:
             # There's no point in constructing the extra algebra if this
         self._rational_algebra = None
         if field is not QQ:
             # There's no point in constructing the extra algebra if this
@@ -1505,17 +1597,11 @@ class RationalBasisEJA(FiniteDimensionalEJA):
                                        jordan_product,
                                        inner_product,
                                        field=QQ,
                                        jordan_product,
                                        inner_product,
                                        field=QQ,
+                                       associative=self.is_associative(),
                                        orthonormalize=False,
                                        check_field=False,
                                        check_axioms=False)
 
                                        orthonormalize=False,
                                        check_field=False,
                                        check_axioms=False)
 
-        super().__init__(basis,
-                         jordan_product,
-                         inner_product,
-                         field=field,
-                         check_field=check_field,
-                         **kwargs)
-
     @cached_method
     def _charpoly_coefficients(self):
         r"""
     @cached_method
     def _charpoly_coefficients(self):
         r"""
@@ -1639,6 +1725,21 @@ class ConcreteEJA(RationalBasisEJA):
 
 
 class MatrixEJA:
 
 
 class MatrixEJA:
+    @staticmethod
+    def jordan_product(X,Y):
+        return (X*Y + Y*X)/2
+
+    @staticmethod
+    def trace_inner_product(X,Y):
+        r"""
+        A trace inner-product for matrices that aren't embedded in the
+        reals.
+        """
+        # We take the norm (absolute value) because Octonions() isn't
+        # smart enough yet to coerce its one() into the base field.
+        return (X*Y).trace().abs()
+
+class RealEmbeddedMatrixEJA(MatrixEJA):
     @staticmethod
     def dimension_over_reals():
         r"""
     @staticmethod
     def dimension_over_reals():
         r"""
@@ -1684,9 +1785,6 @@ class MatrixEJA:
             raise ValueError("the matrix 'M' must be a real embedding")
         return M
 
             raise ValueError("the matrix 'M' must be a real embedding")
         return M
 
-    @staticmethod
-    def jordan_product(X,Y):
-        return (X*Y + Y*X)/2
 
     @classmethod
     def trace_inner_product(cls,X,Y):
 
     @classmethod
     def trace_inner_product(cls,X,Y):
@@ -1695,29 +1793,11 @@ class MatrixEJA:
 
         SETUP::
 
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
-            ....:                                  ComplexHermitianEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
             ....:                                  QuaternionHermitianEJA)
 
         EXAMPLES::
 
             ....:                                  QuaternionHermitianEJA)
 
         EXAMPLES::
 
-        This gives the same answer as it would if we computed the trace
-        from the unembedded (original) matrices::
-
-            sage: set_random_seed()
-            sage: J = RealSymmetricEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = J.real_unembed(Xe)
-            sage: Y = J.real_unembed(Ye)
-            sage: expected = (X*Y).trace()
-            sage: actual = J.trace_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
-
-        ::
-
             sage: set_random_seed()
             sage: J = ComplexHermitianEJA.random_instance()
             sage: x,y = J.random_elements(2)
             sage: set_random_seed()
             sage: J = ComplexHermitianEJA.random_instance()
             sage: x,y = J.random_elements(2)
@@ -1745,27 +1825,15 @@ class MatrixEJA:
             True
 
         """
             True
 
         """
-        Xu = cls.real_unembed(X)
-        Yu = cls.real_unembed(Y)
-        tr = (Xu*Yu).trace()
-
-        try:
-            # Works in QQ, AA, RDF, et cetera.
-            return tr.real()
-        except AttributeError:
-            # A quaternion doesn't have a real() method, but does
-            # have coefficient_tuple() method that returns the
-            # coefficients of 1, i, j, and k -- in that order.
-            return tr.coefficient_tuple()[0]
-
-
-class RealMatrixEJA(MatrixEJA):
-    @staticmethod
-    def dimension_over_reals():
-        return 1
-
+        # This does in fact compute the real part of the trace.
+        # If we compute the trace of e.g. a complex matrix M,
+        # then we do so by adding up its diagonal entries --
+        # call them z_1 through z_n. The real embedding of z_1
+        # will be a 2-by-2 REAL matrix [a, b; -b, a] whose trace
+        # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
+        return (X*Y).trace()/cls.dimension_over_reals()
 
 
-class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
+class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1778,13 +1846,13 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
     EXAMPLES::
 
         sage: J = RealSymmetricEJA(2)
     EXAMPLES::
 
         sage: J = RealSymmetricEJA(2)
-        sage: e0, e1, e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e1*e1
-        1/2*e0 + 1/2*e2
-        sage: e2*e2
-        e2
+        sage: b0, b1, b2 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b1*b1
+        1/2*b0 + 1/2*b2
+        sage: b2*b2
+        b2
 
     In theory, our "field" can be any subfield of the reals::
 
 
     In theory, our "field" can be any subfield of the reals::
 
@@ -1831,7 +1899,7 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
 
     """
     @classmethod
 
     """
     @classmethod
-    def _denormalized_basis(cls, n):
+    def _denormalized_basis(cls, n, field):
         """
         Return a basis for the space of real symmetric n-by-n matrices.
 
         """
         Return a basis for the space of real symmetric n-by-n matrices.
 
@@ -1843,7 +1911,7 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: B = RealSymmetricEJA._denormalized_basis(n)
+            sage: B = RealSymmetricEJA._denormalized_basis(n,ZZ)
             sage: all( M.is_symmetric() for M in  B)
             True
 
             sage: all( M.is_symmetric() for M in  B)
             True
 
@@ -1853,7 +1921,7 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
         S = []
         for i in range(n):
             for j in range(i+1):
         S = []
         for i in range(n):
             for j in range(i+1):
-                Eij = matrix(ZZ, n, lambda k,l: k==i and l==j)
+                Eij = matrix(field, n, lambda k,l: k==i and l==j)
                 if i == j:
                     Sij = Eij
                 else:
                 if i == j:
                     Sij = Eij
                 else:
@@ -1874,26 +1942,32 @@ class RealSymmetricEJA(ConcreteEJA, RealMatrixEJA):
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
-    def __init__(self, n, **kwargs):
+    def __init__(self, n, field=AA, **kwargs):
         # We know this is a valid EJA, but will double-check
         # if the user passes check_axioms=True.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         # We know this is a valid EJA, but will double-check
         # if the user passes check_axioms=True.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-        super(RealSymmetricEJA, self).__init__(self._denormalized_basis(n),
-                                               self.jordan_product,
-                                               self.trace_inner_product,
-                                               **kwargs)
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
 
         # TODO: this could be factored out somehow, but is left here
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
 
         # TODO: this could be factored out somehow, but is left here
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
-        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        idV = self.matrix_space().one()
         self.one.set_cache(self(idV))
 
 
 
         self.one.set_cache(self(idV))
 
 
 
-class ComplexMatrixEJA(MatrixEJA):
+class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
     # A manual dictionary-cache for the complex_extension() method,
     # since apparently @classmethods can't also be @cached_methods.
     _complex_extension = {}
     # A manual dictionary-cache for the complex_extension() method,
     # since apparently @classmethods can't also be @cached_methods.
     _complex_extension = {}
@@ -1972,7 +2046,7 @@ class ComplexMatrixEJA(MatrixEJA):
             True
 
         """
             True
 
         """
-        super(ComplexMatrixEJA,cls).real_embed(M)
+        super().real_embed(M)
         n = M.nrows()
 
         # We don't need any adjoined elements...
         n = M.nrows()
 
         # We don't need any adjoined elements...
@@ -2019,7 +2093,7 @@ class ComplexMatrixEJA(MatrixEJA):
             True
 
         """
             True
 
         """
-        super(ComplexMatrixEJA,cls).real_unembed(M)
+        super().real_unembed(M)
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
         F = cls.complex_extension(M.base_ring())
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
         F = cls.complex_extension(M.base_ring())
@@ -2100,7 +2174,7 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
     """
 
     @classmethod
     """
 
     @classmethod
-    def _denormalized_basis(cls, n):
+    def _denormalized_basis(cls, n, field):
         """
         Returns a basis for the space of complex Hermitian n-by-n matrices.
 
         """
         Returns a basis for the space of complex Hermitian n-by-n matrices.
 
@@ -2118,15 +2192,14 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: B = ComplexHermitianEJA._denormalized_basis(n)
+            sage: B = ComplexHermitianEJA._denormalized_basis(n,ZZ)
             sage: all( M.is_symmetric() for M in  B)
             True
 
         """
             sage: all( M.is_symmetric() for M in  B)
             True
 
         """
-        field = ZZ
-        R = PolynomialRing(field, 'z')
+        R = PolynomialRing(ZZ, 'z')
         z = R.gen()
         z = R.gen()
-        F = field.extension(z**2 + 1, 'I')
+        F = ZZ.extension(z**2 + 1, 'I')
         I = F.gen(1)
 
         # This is like the symmetric case, but we need to be careful:
         I = F.gen(1)
 
         # This is like the symmetric case, but we need to be careful:
@@ -2157,20 +2230,26 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
                 # "erase" E_ij
                 Eij[i,j] = 0
 
                 # "erase" E_ij
                 Eij[i,j] = 0
 
-        # Since we embedded these, we can drop back to the "field" that we
-        # started with instead of the complex extension "F".
+        # Since we embedded the entries, we can drop back to the
+        # desired real "field" instead of the extension "F".
         return tuple( s.change_ring(field) for s in S )
 
 
         return tuple( s.change_ring(field) for s in S )
 
 
-    def __init__(self, n, **kwargs):
+    def __init__(self, n, field=AA, **kwargs):
         # We know this is a valid EJA, but will double-check
         # if the user passes check_axioms=True.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         # We know this is a valid EJA, but will double-check
         # if the user passes check_axioms=True.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-        super(ComplexHermitianEJA, self).__init__(self._denormalized_basis(n),
-                                                  self.jordan_product,
-                                                  self.trace_inner_product,
-                                                  **kwargs)
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
         # TODO: this could be factored out somehow, but is left here
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
         # TODO: this could be factored out somehow, but is left here
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
@@ -2190,7 +2269,7 @@ class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
-class QuaternionMatrixEJA(MatrixEJA):
+class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
 
     # A manual dictionary-cache for the quaternion_extension() method,
     # since apparently @classmethods can't also be @cached_methods.
 
     # A manual dictionary-cache for the quaternion_extension() method,
     # since apparently @classmethods can't also be @cached_methods.
@@ -2253,7 +2332,7 @@ class QuaternionMatrixEJA(MatrixEJA):
             True
 
         """
             True
 
         """
-        super(QuaternionMatrixEJA,cls).real_embed(M)
+        super().real_embed(M)
         quaternions = M.base_ring()
         n = M.nrows()
 
         quaternions = M.base_ring()
         n = M.nrows()
 
@@ -2308,7 +2387,7 @@ class QuaternionMatrixEJA(MatrixEJA):
             True
 
         """
             True
 
         """
-        super(QuaternionMatrixEJA,cls).real_unembed(M)
+        super().real_unembed(M)
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
 
         n = ZZ(M.nrows())
         d = cls.dimension_over_reals()
 
@@ -2396,7 +2475,7 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
 
     """
     @classmethod
 
     """
     @classmethod
-    def _denormalized_basis(cls, n):
+    def _denormalized_basis(cls, n, field):
         """
         Returns a basis for the space of quaternion Hermitian n-by-n matrices.
 
         """
         Returns a basis for the space of quaternion Hermitian n-by-n matrices.
 
@@ -2414,12 +2493,11 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: B = QuaternionHermitianEJA._denormalized_basis(n)
+            sage: B = QuaternionHermitianEJA._denormalized_basis(n,ZZ)
             sage: all( M.is_symmetric() for M in B )
             True
 
         """
             sage: all( M.is_symmetric() for M in B )
             True
 
         """
-        field = ZZ
         Q = QuaternionAlgebra(QQ,-1,-1)
         I,J,K = Q.gens()
 
         Q = QuaternionAlgebra(QQ,-1,-1)
         I,J,K = Q.gens()
 
@@ -2463,20 +2541,27 @@ class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
                 # "erase" E_ij
                 Eij[i,j] = 0
 
                 # "erase" E_ij
                 Eij[i,j] = 0
 
-        # Since we embedded these, we can drop back to the "field" that we
-        # started with instead of the quaternion algebra "Q".
+        # Since we embedded the entries, we can drop back to the
+        # desired real "field" instead of the quaternion algebra "Q".
         return tuple( s.change_ring(field) for s in S )
 
 
         return tuple( s.change_ring(field) for s in S )
 
 
-    def __init__(self, n, **kwargs):
+    def __init__(self, n, field=AA, **kwargs):
         # We know this is a valid EJA, but will double-check
         # if the user passes check_axioms=True.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         # We know this is a valid EJA, but will double-check
         # if the user passes check_axioms=True.
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-        super(QuaternionHermitianEJA, self).__init__(self._denormalized_basis(n),
-                                                     self.jordan_product,
-                                                     self.trace_inner_product,
-                                                     **kwargs)
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+
         # TODO: this could be factored out somehow, but is left here
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
         # TODO: this could be factored out somehow, but is left here
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
@@ -2519,19 +2604,19 @@ class HadamardEJA(ConcreteEJA):
     This multiplication table can be verified by hand::
 
         sage: J = HadamardEJA(3)
     This multiplication table can be verified by hand::
 
         sage: J = HadamardEJA(3)
-        sage: e0,e1,e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
+        sage: b0,b1,b2 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b0*b1
         0
         0
-        sage: e0*e2
+        sage: b0*b2
         0
         0
-        sage: e1*e1
-        e1
-        sage: e1*e2
+        sage: b1*b1
+        b1
+        sage: b1*b2
         0
         0
-        sage: e2*e2
-        e2
+        sage: b2*b2
+        b2
 
     TESTS:
 
 
     TESTS:
 
@@ -2541,7 +2626,7 @@ class HadamardEJA(ConcreteEJA):
         (r0, r1, r2)
 
     """
         (r0, r1, r2)
 
     """
-    def __init__(self, n, **kwargs):
+    def __init__(self, n, field=AA, **kwargs):
         if n == 0:
             jordan_product = lambda x,y: x
             inner_product = lambda x,y: x
         if n == 0:
             jordan_product = lambda x,y: x
             inner_product = lambda x,y: x
@@ -2562,10 +2647,12 @@ class HadamardEJA(ConcreteEJA):
         if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-        column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
+        column_basis = tuple( b.column()
+                              for b in FreeModule(field, n).basis() )
         super().__init__(column_basis,
                          jordan_product,
                          inner_product,
         super().__init__(column_basis,
                          jordan_product,
                          inner_product,
+                         field=field,
                          associative=True,
                          **kwargs)
         self.rank.set_cache(n)
                          associative=True,
                          **kwargs)
         self.rank.set_cache(n)
@@ -2673,7 +2760,7 @@ class BilinearFormEJA(ConcreteEJA):
         True
 
     """
         True
 
     """
-    def __init__(self, B, **kwargs):
+    def __init__(self, B, field=AA, **kwargs):
         # The matrix "B" is supplied by the user in most cases,
         # so it makes sense to check whether or not its positive-
         # definite unless we are specifically asked not to...
         # The matrix "B" is supplied by the user in most cases,
         # so it makes sense to check whether or not its positive-
         # definite unless we are specifically asked not to...
@@ -2701,11 +2788,20 @@ class BilinearFormEJA(ConcreteEJA):
             return P([z0] + zbar.list())
 
         n = B.nrows()
             return P([z0] + zbar.list())
 
         n = B.nrows()
-        column_basis = tuple( b.column() for b in FreeModule(ZZ, n).basis() )
-        super(BilinearFormEJA, self).__init__(column_basis,
-                                              jordan_product,
-                                              inner_product,
-                                              **kwargs)
+        column_basis = tuple( b.column()
+                              for b in FreeModule(field, n).basis() )
+
+        # TODO: I haven't actually checked this, but it seems legit.
+        associative = False
+        if n <= 2:
+            associative = True
+
+        super().__init__(column_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
 
         # The rank of this algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded
 
         # The rank of this algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded
@@ -2765,20 +2861,20 @@ class JordanSpinEJA(BilinearFormEJA):
     This multiplication table can be verified by hand::
 
         sage: J = JordanSpinEJA(4)
     This multiplication table can be verified by hand::
 
         sage: J = JordanSpinEJA(4)
-        sage: e0,e1,e2,e3 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
-        e1
-        sage: e0*e2
-        e2
-        sage: e0*e3
-        e3
-        sage: e1*e2
+        sage: b0,b1,b2,b3 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b0*b1
+        b1
+        sage: b0*b2
+        b2
+        sage: b0*b3
+        b3
+        sage: b1*b2
         0
         0
-        sage: e1*e3
+        sage: b1*b3
         0
         0
-        sage: e2*e3
+        sage: b2*b3
         0
 
     We can change the generator prefix::
         0
 
     We can change the generator prefix::
@@ -2799,7 +2895,7 @@ class JordanSpinEJA(BilinearFormEJA):
             True
 
     """
             True
 
     """
-    def __init__(self, n, **kwargs):
+    def __init__(self, n, *args, **kwargs):
         # This is a special case of the BilinearFormEJA with the
         # identity matrix as its bilinear form.
         B = matrix.identity(ZZ, n)
         # This is a special case of the BilinearFormEJA with the
         # identity matrix as its bilinear form.
         B = matrix.identity(ZZ, n)
@@ -2810,7 +2906,7 @@ class JordanSpinEJA(BilinearFormEJA):
 
         # But also don't pass check_field=False here, because the user
         # can pass in a field!
 
         # But also don't pass check_field=False here, because the user
         # can pass in a field!
-        super(JordanSpinEJA, self).__init__(B, **kwargs)
+        super().__init__(B, *args, **kwargs)
 
     @staticmethod
     def _max_random_instance_size():
 
     @staticmethod
     def _max_random_instance_size():
@@ -2868,10 +2964,12 @@ class TrivialEJA(ConcreteEJA):
         if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
         if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
         if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
 
-        super(TrivialEJA, self).__init__(basis,
-                                         jordan_product,
-                                         inner_product,
-                                         **kwargs)
+        super().__init__(basis,
+                         jordan_product,
+                         inner_product,
+                         associative=True,
+                         **kwargs)
+
         # The rank is zero using my definition, namely the dimension of the
         # largest subalgebra generated by any element.
         self.rank.set_cache(0)
         # The rank is zero using my definition, namely the dimension of the
         # largest subalgebra generated by any element.
         self.rank.set_cache(0)
@@ -2884,8 +2982,7 @@ class TrivialEJA(ConcreteEJA):
         return cls(**kwargs)
 
 
         return cls(**kwargs)
 
 
-class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
-                          FiniteDimensionalEJA):
+class CartesianProductEJA(FiniteDimensionalEJA):
     r"""
     The external (orthogonal) direct sum of two or more Euclidean
     Jordan algebras. Every Euclidean Jordan algebra decomposes into an
     r"""
     The external (orthogonal) direct sum of two or more Euclidean
     Jordan algebras. Every Euclidean Jordan algebra decomposes into an
@@ -2981,6 +3078,33 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
         sage: CP2.is_associative()
         False
 
         sage: CP2.is_associative()
         False
 
+    Cartesian products of Cartesian products work::
+
+        sage: J1 = JordanSpinEJA(1)
+        sage: J2 = JordanSpinEJA(1)
+        sage: J3 = JordanSpinEJA(1)
+        sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
+        sage: J.multiplication_table()
+        +----++----+----+----+
+        | *  || b0 | b1 | b2 |
+        +====++====+====+====+
+        | b0 || b0 | 0  | 0  |
+        +----++----+----+----+
+        | b1 || 0  | b1 | 0  |
+        +----++----+----+----+
+        | b2 || 0  | 0  | b2 |
+        +----++----+----+----+
+        sage: HadamardEJA(3).multiplication_table()
+        +----++----+----+----+
+        | *  || b0 | b1 | b2 |
+        +====++====+====+====+
+        | b0 || b0 | 0  | 0  |
+        +----++----+----+----+
+        | b1 || 0  | b1 | 0  |
+        +----++----+----+----+
+        | b2 || 0  | 0  | b2 |
+        +----++----+----+----+
+
     TESTS:
 
     All factors must share the same base field::
     TESTS:
 
     All factors must share the same base field::
@@ -3008,37 +3132,41 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
     Element = FiniteDimensionalEJAElement
 
 
     Element = FiniteDimensionalEJAElement
 
 
-    def __init__(self, algebras, **kwargs):
-        CombinatorialFreeModule_CartesianProduct.__init__(self,
-                                                          algebras,
-                                                          **kwargs)
-        field = algebras[0].base_ring()
-        if not all( J.base_ring() == field for J in algebras ):
+    def __init__(self, factors, **kwargs):
+        m = len(factors)
+        if m == 0:
+            return TrivialEJA()
+
+        self._sets = factors
+
+        field = factors[0].base_ring()
+        if not all( J.base_ring() == field for J in factors ):
             raise ValueError("all factors must share the same base field")
 
             raise ValueError("all factors must share the same base field")
 
-        associative = all( m.is_associative() for m in algebras )
+        associative = all( f.is_associative() for f in factors )
 
 
-        # The definition of matrix_space() and self.basis() relies
-        # only on the stuff in the CFM_CartesianProduct class, which
-        # we've already initialized.
-        Js = self.cartesian_factors()
-        m = len(Js)
         MS = self.matrix_space()
         MS = self.matrix_space()
-        basis = tuple(
-            MS(tuple( self.cartesian_projection(i)(b).to_matrix()
-                      for i in range(m) ))
-            for b in self.basis()
-        )
+        basis = []
+        zero = MS.zero()
+        for i in range(m):
+            for b in factors[i].matrix_basis():
+                z = list(zero)
+                z[i] = b
+                basis.append(z)
+
+        basis = tuple( MS(b) for b in basis )
 
         # Define jordan/inner products that operate on that matrix_basis.
         def jordan_product(x,y):
             return MS(tuple(
 
         # Define jordan/inner products that operate on that matrix_basis.
         def jordan_product(x,y):
             return MS(tuple(
-                (Js[i](x[i])*Js[i](y[i])).to_matrix() for i in range(m)
+                (factors[i](x[i])*factors[i](y[i])).to_matrix()
+                for i in range(m)
             ))
 
         def inner_product(x, y):
             return sum(
             ))
 
         def inner_product(x, y):
             return sum(
-                Js[i](x[i]).inner_product(Js[i](y[i])) for i in range(m)
+                factors[i](x[i]).inner_product(factors[i](y[i]))
+                for i in range(m)
             )
 
         # There's no need to check the field since it already came
             )
 
         # There's no need to check the field since it already came
@@ -3058,9 +3186,25 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
                                       check_field=False,
                                       check_axioms=False)
 
                                       check_field=False,
                                       check_axioms=False)
 
-        ones = tuple(J.one() for J in algebras)
-        self.one.set_cache(self._cartesian_product_of_elements(ones))
-        self.rank.set_cache(sum(J.rank() for J in algebras))
+        ones = tuple(J.one().to_matrix() for J in factors)
+        self.one.set_cache(self(ones))
+        self.rank.set_cache(sum(J.rank() for J in factors))
+
+    def cartesian_factors(self):
+        # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
+        return self._sets
+
+    def cartesian_factor(self, i):
+        r"""
+        Return the ``i``th factor of this algebra.
+        """
+        return self._sets[i]
+
+    def _repr_(self):
+        # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
+        from sage.categories.cartesian_product import cartesian_product
+        return cartesian_product.symbol.join("%s" % factor
+                                             for factor in self._sets)
 
     def matrix_space(self):
         r"""
 
     def matrix_space(self):
         r"""
@@ -3157,9 +3301,12 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             True
 
         """
             True
 
         """
-        Ji = self.cartesian_factors()[i]
-        # Requires the fix on Trac 31421/31422 to work!
-        Pi = super().cartesian_projection(i)
+        offset = sum( self.cartesian_factor(k).dimension()
+                      for k in range(i) )
+        Ji = self.cartesian_factor(i)
+        Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
+                                   codomain=Ji)
+
         return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
 
     @cached_method
         return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
 
     @cached_method
@@ -3265,9 +3412,11 @@ class CartesianProductEJA(CombinatorialFreeModule_CartesianProduct,
             True
 
         """
             True
 
         """
-        Ji = self.cartesian_factors()[i]
-        # Requires the fix on Trac 31421/31422 to work!
-        Ei = super().cartesian_embedding(i)
+        offset = sum( self.cartesian_factor(k).dimension()
+                      for k in range(i) )
+        Ji = self.cartesian_factor(i)
+        Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
+                                 codomain=self)
         return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
 
         return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
 
@@ -3312,4 +3461,15 @@ class RationalBasisCartesianProductEJA(CartesianProductEJA,
 
 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
 
 
 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
 
-random_eja = ConcreteEJA.random_instance
+def random_eja(*args, **kwargs):
+    J1 = ConcreteEJA.random_instance(*args, **kwargs)
+
+    # This might make Cartesian products appear roughly as often as
+    # any other ConcreteEJA.
+    if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
+        # Use random_eja() again so we can get more than two factors.
+        J2 = random_eja(*args, **kwargs)
+        J = cartesian_product([J1,J2])
+        return J
+    else:
+        return J1