]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: factor out a class for real-embedded matrices.
[sage.d.git] / mjo / eja / eja_algebra.py
index 05b9a5a4191bffa74f3680df50d0327cf12b1d1e..5bf597565b2ae292032c3f0a532763d7889cd2a8 100644 (file)
@@ -1,9 +1,53 @@
 """
-Euclidean Jordan Algebras. These are formally-real Jordan Algebras;
-specifically those where u^2 + v^2 = 0 implies that u = v = 0. They
-are used in optimization, and have some additional nice methods beyond
-what can be supported in a general Jordan Algebra.
-
+Representations and constructions for Euclidean Jordan algebras.
+
+A Euclidean Jordan algebra is a Jordan algebra that has some
+additional properties:
+
+  1.   It is finite-dimensional.
+  2.   Its scalar field is the real numbers.
+  3a.  An inner product is defined on it, and...
+  3b.  That inner product is compatible with the Jordan product
+       in the sense that `<x*y,z> = <y,x*z>` for all elements
+       `x,y,z` in the algebra.
+
+Every Euclidean Jordan algebra is formally-real: for any two elements
+`x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
+0`. Conversely, every finite-dimensional formally-real Jordan algebra
+can be made into a Euclidean Jordan algebra with an appropriate choice
+of inner-product.
+
+Formally-real Jordan algebras were originally studied as a framework
+for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
+symmetric cone optimization, since every symmetric cone arises as the
+cone of squares in some Euclidean Jordan algebra.
+
+It is known that every Euclidean Jordan algebra decomposes into an
+orthogonal direct sum (essentially, a Cartesian product) of simple
+algebras, and that moreover, up to Jordan-algebra isomorphism, there
+are only five families of simple algebras. We provide constructions
+for these simple algebras:
+
+  * :class:`BilinearFormEJA`
+  * :class:`RealSymmetricEJA`
+  * :class:`ComplexHermitianEJA`
+  * :class:`QuaternionHermitianEJA`
+
+Missing from this list is the algebra of three-by-three octononion
+Hermitian matrices, as there is (as of yet) no implementation of the
+octonions in SageMath. In addition to these, we provide two other
+example constructions,
+
+  * :class:`HadamardEJA`
+  * :class:`TrivialEJA`
+
+The Jordan spin algebra is a bilinear form algebra where the bilinear
+form is the identity. The Hadamard EJA is simply a Cartesian product
+of one-dimensional spin algebras. And last but not least, the trivial
+EJA is exactly what you think. Cartesian products of these are also
+supported using the usual ``cartesian_product()`` function; as a
+result, we support (up to isomorphism) all Euclidean Jordan algebras
+that don't involve octonions.
 
 SETUP::
 
@@ -13,13 +57,13 @@ EXAMPLES::
 
     sage: random_eja()
     Euclidean Jordan algebra of dimension...
-
 """
 
 from itertools import repeat
 
 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
 from sage.categories.magmatic_algebras import MagmaticAlgebras
+from sage.categories.sets_cat import cartesian_product
 from sage.combinat.free_module import CombinatorialFreeModule
 from sage.matrix.constructor import matrix
 from sage.matrix.matrix_space import MatrixSpace
@@ -29,11 +73,222 @@ from sage.modules.free_module import FreeModule, VectorSpace
 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
                             PolynomialRing,
                             QuadraticField)
-from mjo.eja.eja_element import FiniteDimensionalEuclideanJordanAlgebraElement
-from mjo.eja.eja_operator import FiniteDimensionalEuclideanJordanAlgebraOperator
-from mjo.eja.eja_utils import _mat2vec
+from mjo.eja.eja_element import FiniteDimensionalEJAElement
+from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
+from mjo.eja.eja_utils import _all2list, _mat2vec
+
+class FiniteDimensionalEJA(CombinatorialFreeModule):
+    r"""
+    A finite-dimensional Euclidean Jordan algebra.
+
+    INPUT:
+
+      - ``basis`` -- a tuple; a tuple of basis elements in "matrix
+        form," which must be the same form as the arguments to
+        ``jordan_product`` and ``inner_product``. In reality, "matrix
+        form" can be either vectors, matrices, or a Cartesian product
+        (ordered tuple) of vectors or matrices. All of these would
+        ideally be vector spaces in sage with no special-casing
+        needed; but in reality we turn vectors into column-matrices
+        and Cartesian products `(a,b)` into column matrices
+        `(a,b)^{T}` after converting `a` and `b` themselves.
+
+      - ``jordan_product`` -- a function; afunction of two ``basis``
+        elements (in matrix form) that returns their jordan product,
+        also in matrix form; this will be applied to ``basis`` to
+        compute a multiplication table for the algebra.
+
+      - ``inner_product`` -- a function; a function of two ``basis``
+        elements (in matrix form) that returns their inner
+        product. This will be applied to ``basis`` to compute an
+        inner-product table (basically a matrix) for this algebra.
+
+      - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
+        field for the algebra.
+
+      - ``orthonormalize`` -- boolean (default: ``True``); whether or
+        not to orthonormalize the basis. Doing so is expensive and
+        generally rules out using the rationals as your ``field``, but
+        is required for spectral decompositions.
+
+    SETUP::
+
+        sage: from mjo.eja.eja_algebra import random_eja
+
+    TESTS:
+
+    We should compute that an element subalgebra is associative even
+    if we circumvent the element method::
+
+        sage: set_random_seed()
+        sage: J = random_eja(field=QQ,orthonormalize=False)
+        sage: x = J.random_element()
+        sage: A = x.subalgebra_generated_by(orthonormalize=False)
+        sage: basis = tuple(b.superalgebra_element() for b in A.basis())
+        sage: J.subalgebra(basis, orthonormalize=False).is_associative()
+        True
+
+    """
+    Element = FiniteDimensionalEJAElement
+
+    def __init__(self,
+                 basis,
+                 jordan_product,
+                 inner_product,
+                 field=AA,
+                 orthonormalize=True,
+                 associative=None,
+                 cartesian_product=False,
+                 check_field=True,
+                 check_axioms=True,
+                 prefix="b"):
+
+        n = len(basis)
+
+        if check_field:
+            if not field.is_subring(RR):
+                # Note: this does return true for the real algebraic
+                # field, the rationals, and any quadratic field where
+                # we've specified a real embedding.
+                raise ValueError("scalar field is not real")
+
+        if check_axioms:
+            # Check commutativity of the Jordan and inner-products.
+            # This has to be done before we build the multiplication
+            # and inner-product tables/matrices, because we take
+            # advantage of symmetry in the process.
+            if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
+                        for bi in basis
+                        for bj in basis ):
+                raise ValueError("Jordan product is not commutative")
+
+            if not all( inner_product(bi,bj) == inner_product(bj,bi)
+                        for bi in basis
+                        for bj in basis ):
+                raise ValueError("inner-product is not commutative")
+
+
+        category = MagmaticAlgebras(field).FiniteDimensional()
+        category = category.WithBasis().Unital().Commutative()
+
+        if associative is None:
+            # We should figure it out. As with check_axioms, we have to do
+            # this without the help of the _jordan_product_is_associative()
+            # method because we need to know the category before we
+            # initialize the algebra.
+            associative = all( jordan_product(jordan_product(bi,bj),bk)
+                               ==
+                               jordan_product(bi,jordan_product(bj,bk))
+                               for bi in basis
+                               for bj in basis
+                               for bk in basis)
+
+        if associative:
+            # Element subalgebras can take advantage of this.
+            category = category.Associative()
+        if cartesian_product:
+            # Use join() here because otherwise we only get the
+            # "Cartesian product of..." and not the things themselves.
+            category = category.join([category,
+                                      category.CartesianProducts()])
+
+        # Call the superclass constructor so that we can use its from_vector()
+        # method to build our multiplication table.
+        CombinatorialFreeModule.__init__(self,
+                                         field,
+                                         range(n),
+                                         prefix=prefix,
+                                         category=category,
+                                         bracket=False)
+
+        # Now comes all of the hard work. We'll be constructing an
+        # ambient vector space V that our (vectorized) basis lives in,
+        # as well as a subspace W of V spanned by those (vectorized)
+        # basis elements. The W-coordinates are the coefficients that
+        # we see in things like x = 1*b1 + 2*b2.
+        vector_basis = basis
+
+        degree = 0
+        if n > 0:
+            degree = len(_all2list(basis[0]))
+
+        # Build an ambient space that fits our matrix basis when
+        # written out as "long vectors."
+        V = VectorSpace(field, degree)
+
+        # The matrix that will hole the orthonormal -> unorthonormal
+        # coordinate transformation.
+        self._deortho_matrix = None
+
+        if orthonormalize:
+            # Save a copy of the un-orthonormalized basis for later.
+            # Convert it to ambient V (vector) coordinates while we're
+            # at it, because we'd have to do it later anyway.
+            deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
+
+            from mjo.eja.eja_utils import gram_schmidt
+            basis = tuple(gram_schmidt(basis, inner_product))
+
+        # Save the (possibly orthonormalized) matrix basis for
+        # later...
+        self._matrix_basis = basis
+
+        # Now create the vector space for the algebra, which will have
+        # its own set of non-ambient coordinates (in terms of the
+        # supplied basis).
+        vector_basis = tuple( V(_all2list(b)) for b in basis )
+        W = V.span_of_basis( vector_basis, check=check_axioms)
+
+        if orthonormalize:
+            # Now "W" is the vector space of our algebra coordinates. The
+            # variables "X1", "X2",...  refer to the entries of vectors in
+            # W. Thus to convert back and forth between the orthonormal
+            # coordinates and the given ones, we need to stick the original
+            # basis in W.
+            U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
+            self._deortho_matrix = matrix( U.coordinate_vector(q)
+                                           for q in vector_basis )
+
+
+        # Now we actually compute the multiplication and inner-product
+        # tables/matrices using the possibly-orthonormalized basis.
+        self._inner_product_matrix = matrix.identity(field, n)
+        self._multiplication_table = [ [0 for j in range(i+1)]
+                                       for i in range(n) ]
+
+        # Note: the Jordan and inner-products are defined in terms
+        # of the ambient basis. It's important that their arguments
+        # are in ambient coordinates as well.
+        for i in range(n):
+            for j in range(i+1):
+                # ortho basis w.r.t. ambient coords
+                q_i = basis[i]
+                q_j = basis[j]
+
+                # The jordan product returns a matrixy answer, so we
+                # have to convert it to the algebra coordinates.
+                elt = jordan_product(q_i, q_j)
+                elt = W.coordinate_vector(V(_all2list(elt)))
+                self._multiplication_table[i][j] = self.from_vector(elt)
+
+                if not orthonormalize:
+                    # If we're orthonormalizing the basis with respect
+                    # to an inner-product, then the inner-product
+                    # matrix with respect to the resulting basis is
+                    # just going to be the identity.
+                    ip = inner_product(q_i, q_j)
+                    self._inner_product_matrix[i,j] = ip
+                    self._inner_product_matrix[j,i] = ip
+
+        self._inner_product_matrix._cache = {'hermitian': True}
+        self._inner_product_matrix.set_immutable()
+
+        if check_axioms:
+            if not self._is_jordanian():
+                raise ValueError("Jordan identity does not hold")
+            if not self._inner_product_is_associative():
+                raise ValueError("inner product is not associative")
 
-class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
     def _coerce_map_from_base_ring(self):
         """
@@ -59,98 +314,264 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         """
         return None
 
-    def __init__(self,
-                 field,
-                 mult_table,
-                 prefix='e',
-                 category=None,
-                 matrix_basis=None,
-                 check_field=True,
-                 check_axioms=True):
+
+    def product_on_basis(self, i, j):
+        r"""
+        Returns the Jordan product of the `i` and `j`th basis elements.
+
+        This completely defines the Jordan product on the algebra, and
+        is used direclty by our superclass machinery to implement
+        :meth:`product`.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: n = J.dimension()
+            sage: bi = J.zero()
+            sage: bj = J.zero()
+            sage: bi_bj = J.zero()*J.zero()
+            sage: if n > 0:
+            ....:     i = ZZ.random_element(n)
+            ....:     j = ZZ.random_element(n)
+            ....:     bi = J.monomial(i)
+            ....:     bj = J.monomial(j)
+            ....:     bi_bj = J.product_on_basis(i,j)
+            sage: bi*bj == bi_bj
+            True
+
         """
+        # We only stored the lower-triangular portion of the
+        # multiplication table.
+        if j <= i:
+            return self._multiplication_table[i][j]
+        else:
+            return self._multiplication_table[j][i]
+
+    def inner_product(self, x, y):
+        """
+        The inner product associated with this Euclidean Jordan algebra.
+
+        Defaults to the trace inner product, but can be overridden by
+        subclasses if they are sure that the necessary properties are
+        satisfied.
+
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (
-            ....:   FiniteDimensionalEuclideanJordanAlgebra,
-            ....:   JordanSpinEJA,
-            ....:   random_eja)
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  HadamardEJA,
+            ....:                                  BilinearFormEJA)
 
         EXAMPLES:
 
-        By definition, Jordan multiplication commutes::
+        Our inner product is "associative," which means the following for
+        a symmetric bilinear form::
 
             sage: set_random_seed()
             sage: J = random_eja()
+            sage: x,y,z = J.random_elements(3)
+            sage: (x*y).inner_product(z) == y.inner_product(x*z)
+            True
+
+        TESTS:
+
+        Ensure that this is the usual inner product for the algebras
+        over `R^n`::
+
+            sage: set_random_seed()
+            sage: J = HadamardEJA.random_instance()
             sage: x,y = J.random_elements(2)
-            sage: x*y == y*x
+            sage: actual = x.inner_product(y)
+            sage: expected = x.to_vector().inner_product(y.to_vector())
+            sage: actual == expected
+            True
+
+        Ensure that this is one-half of the trace inner-product in a
+        BilinearFormEJA that isn't just the reals (when ``n`` isn't
+        one). This is in Faraut and Koranyi, and also my "On the
+        symmetry..." paper::
+
+            sage: set_random_seed()
+            sage: J = BilinearFormEJA.random_instance()
+            sage: n = J.dimension()
+            sage: x = J.random_element()
+            sage: y = J.random_element()
+            sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
+            True
+
+        """
+        B = self._inner_product_matrix
+        return (B*x.to_vector()).inner_product(y.to_vector())
+
+
+    def is_associative(self):
+        r"""
+        Return whether or not this algebra's Jordan product is associative.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+
+        EXAMPLES::
+
+            sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
+            sage: J.is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.is_associative()
+            True
+
+        """
+        return "Associative" in self.category().axioms()
+
+    def _is_commutative(self):
+        r"""
+        Whether or not this algebra's multiplication table is commutative.
+
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid multiplication table.
+        """
+        return all( x*y == y*x for x in self.gens() for y in self.gens() )
+
+    def _is_jordanian(self):
+        r"""
+        Whether or not this algebra's multiplication table respects the
+        Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
+
+        We only check one arrangement of `x` and `y`, so for a
+        ``True`` result to be truly true, you should also check
+        :meth:`_is_commutative`. This method should of course always
+        return ``True``, unless this algebra was constructed with
+        ``check_axioms=False`` and passed an invalid multiplication table.
+        """
+        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
+                    ==
+                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
+                    for i in range(self.dimension())
+                    for j in range(self.dimension()) )
+
+    def _jordan_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's Jordan product is
+        associative; that is, whether or not `x*(y*z) = (x*y)*z`
+        for all `x,y,x`.
+
+        This method should agree with :meth:`is_associative` unless
+        you lied about the value of the ``associative`` parameter
+        when you constructed the algebra.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA)
+
+        EXAMPLES::
+
+            sage: J = RealSymmetricEJA(4, orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A._jordan_product_is_associative()
+            True
+
+        ::
+
+            sage: J = QuaternionHermitianEJA(2)
+            sage: J._jordan_product_is_associative()
+            False
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by()
+            sage: A._jordan_product_is_associative()
             True
 
         TESTS:
 
-        The ``field`` we're given must be real with ``check_field=True``::
+        The values we've presupplied to the constructors agree with
+        the computation::
 
-            sage: JordanSpinEJA(2,QQbar)
-            Traceback (most recent call last):
-            ...
-            ValueError: scalar field is not real
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: J.is_associative() == J._jordan_product_is_associative()
+            True
 
-        The multiplication table must be square with ``check_axioms=True``::
+        """
+        R = self.base_ring()
 
-            sage: FiniteDimensionalEuclideanJordanAlgebra(QQ,((),()))
-            Traceback (most recent call last):
-            ...
-            ValueError: multiplication table is not square
+        # Used to check whether or not something is zero.
+        epsilon = R.zero()
+        if not R.is_exact():
+            # I don't know of any examples that make this magnitude
+            # necessary because I don't know how to make an
+            # associative algebra when the element subalgebra
+            # construction is unreliable (as it is over RDF; we can't
+            # find the degree of an element because we can't compute
+            # the rank of a matrix). But even multiplication of floats
+            # is non-associative, so *some* epsilon is needed... let's
+            # just take the one from _inner_product_is_associative?
+            epsilon = 1e-15
+
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y)*z - x*(y*z)
+
+                    if diff.norm() > epsilon:
+                        return False
+
+        return True
 
+    def _inner_product_is_associative(self):
+        r"""
+        Return whether or not this algebra's inner product `B` is
+        associative; that is, whether or not `B(xy,z) = B(x,yz)`.
+
+        This method should of course always return ``True``, unless
+        this algebra was constructed with ``check_axioms=False`` and
+        passed an invalid Jordan or inner-product.
         """
-        if check_field:
-            if not field.is_subring(RR):
-                # Note: this does return true for the real algebraic
-                # field, the rationals, and any quadratic field where
-                # we've specified a real embedding.
-                raise ValueError("scalar field is not real")
+        R = self.base_ring()
 
-        # The multiplication table had better be square
-        n = len(mult_table)
-        if check_axioms:
-            if not all( len(l) == n for l in mult_table ):
-                raise ValueError("multiplication table is not square")
-
-        self._matrix_basis = matrix_basis
-
-        if category is None:
-            category = MagmaticAlgebras(field).FiniteDimensional()
-            category = category.WithBasis().Unital()
-
-        fda = super(FiniteDimensionalEuclideanJordanAlgebra, self)
-        fda.__init__(field,
-                     range(n),
-                     prefix=prefix,
-                     category=category)
-        self.print_options(bracket='')
-
-        # The multiplication table we're given is necessarily in terms
-        # of vectors, because we don't have an algebra yet for
-        # anything to be an element of. However, it's faster in the
-        # long run to have the multiplication table be in terms of
-        # algebra elements. We do this after calling the superclass
-        # constructor so that from_vector() knows what to do.
-        self._multiplication_table = [ [ self.vector_space().zero()
-                                         for i in range(n) ]
-                                       for j in range(n) ]
-        # take advantage of symmetry
-        for i in range(n):
-            for j in range(i+1):
-                elt = self.from_vector(mult_table[i][j])
-                self._multiplication_table[i][j] = elt
-                self._multiplication_table[j][i] = elt
+        # Used to check whether or not something is zero.
+        epsilon = R.zero()
+        if not R.is_exact():
+            # This choice is sufficient to allow the construction of
+            # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
+            epsilon = 1e-15
 
-        if check_axioms:
-            if not self._is_commutative():
-                raise ValueError("algebra is not commutative")
-            if not self._is_jordanian():
-                raise ValueError("Jordan identity does not hold")
-            if not self._inner_product_is_associative():
-                raise ValueError("inner product is not associative")
+        for i in range(self.dimension()):
+            for j in range(self.dimension()):
+                for k in range(self.dimension()):
+                    x = self.monomial(i)
+                    y = self.monomial(j)
+                    z = self.monomial(k)
+                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
+
+                    if diff.abs() > epsilon:
+                        return False
+
+        return True
 
     def _element_constructor_(self, elt):
         """
@@ -162,7 +583,8 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
             ....:                                  HadamardEJA,
             ....:                                  RealSymmetricEJA)
 
@@ -184,34 +606,56 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             ...
             ValueError: not an element of this algebra
 
+        Tuples work as well, provided that the matrix basis for the
+        algebra consists of them::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
+            b1 + b5
+
         TESTS:
 
-        Ensure that we can convert any element of the two non-matrix
-        simple algebras (whose matrix representations are columns)
-        back and forth faithfully::
+        Ensure that we can convert any element back and forth
+        faithfully between its matrix and algebra representations::
 
             sage: set_random_seed()
-            sage: J = HadamardEJA.random_instance()
-            sage: x = J.random_element()
-            sage: J(x.to_vector().column()) == x
-            True
-            sage: J = JordanSpinEJA.random_instance()
+            sage: J = random_eja()
             sage: x = J.random_element()
-            sage: J(x.to_vector().column()) == x
+            sage: J(x.to_matrix()) == x
             True
+
+        We cannot coerce elements between algebras just because their
+        matrix representations are compatible::
+
+            sage: J1 = HadamardEJA(3)
+            sage: J2 = JordanSpinEJA(3)
+            sage: J2(J1.one())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
+            sage: J1(J2.zero())
+            Traceback (most recent call last):
+            ...
+            ValueError: not an element of this algebra
         """
         msg = "not an element of this algebra"
-        if elt == 0:
-            # The superclass implementation of random_element()
-            # needs to be able to coerce "0" into the algebra.
-            return self.zero()
-        elif elt in self.base_ring():
+        if elt in self.base_ring():
             # Ensure that no base ring -> algebra coercion is performed
             # by this method. There's some stupidity in sage that would
             # otherwise propagate to this method; for example, sage thinks
             # that the integer 3 belongs to the space of 2-by-2 matrices.
             raise ValueError(msg)
 
+        try:
+            # Try to convert a vector into a column-matrix...
+            elt = elt.column()
+        except (AttributeError, TypeError):
+            # and ignore failure, because we weren't really expecting
+            # a vector as an argument anyway.
+            pass
+
         if elt not in self.matrix_space():
             raise ValueError(msg)
 
@@ -221,11 +665,21 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         # element's ring because the basis space might be an algebraic
         # closure whereas the base ring of the 3-by-3 identity matrix
         # could be QQ instead of QQbar.
-        V = VectorSpace(self.base_ring(), elt.nrows()*elt.ncols())
-        W = V.span_of_basis( _mat2vec(s) for s in self.matrix_basis() )
+        #
+        # And, we also have to handle Cartesian product bases (when
+        # the matrix basis consists of tuples) here. The "good news"
+        # is that we're already converting everything to long vectors,
+        # and that strategy works for tuples as well.
+        #
+        # We pass check=False because the matrix basis is "guaranteed"
+        # to be linearly independent... right? Ha ha.
+        elt = _all2list(elt)
+        V = VectorSpace(self.base_ring(), len(elt))
+        W = V.span_of_basis( (V(_all2list(s)) for s in self.matrix_basis()),
+                             check=False)
 
         try:
-            coords =  W.coordinate_vector(_mat2vec(elt))
+            coords = W.coordinate_vector(V(elt))
         except ArithmeticError:  # vector is not in free module
             raise ValueError(msg)
 
@@ -252,69 +706,6 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         fmt = "Euclidean Jordan algebra of dimension {} over {}"
         return fmt.format(self.dimension(), self.base_ring())
 
-    def product_on_basis(self, i, j):
-        return self._multiplication_table[i][j]
-
-    def _is_commutative(self):
-        r"""
-        Whether or not this algebra's multiplication table is commutative.
-
-        This method should of course always return ``True``, unless
-        this algebra was constructed with ``check_axioms=False`` and
-        passed an invalid multiplication table.
-        """
-        return all( self.product_on_basis(i,j) == self.product_on_basis(i,j)
-                    for i in range(self.dimension())
-                    for j in range(self.dimension()) )
-
-    def _is_jordanian(self):
-        r"""
-        Whether or not this algebra's multiplication table respects the
-        Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
-
-        We only check one arrangement of `x` and `y`, so for a
-        ``True`` result to be truly true, you should also check
-        :meth:`_is_commutative`. This method should of course always
-        return ``True``, unless this algebra was constructed with
-        ``check_axioms=False`` and passed an invalid multiplication table.
-        """
-        return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
-                    ==
-                    (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
-                    for i in range(self.dimension())
-                    for j in range(self.dimension()) )
-
-    def _inner_product_is_associative(self):
-        r"""
-        Return whether or not this algebra's inner product `B` is
-        associative; that is, whether or not `B(xy,z) = B(x,yz)`.
-
-        This method should of course always return ``True``, unless
-        this algebra was constructed with ``check_axioms=False`` and
-        passed an invalid multiplication table.
-        """
-
-        # Used to check whether or not something is zero in an inexact
-        # ring. This number is sufficient to allow the construction of
-        # QuaternionHermitianEJA(2, RDF) with check_axioms=True.
-        epsilon = 1e-16
-
-        for i in range(self.dimension()):
-            for j in range(self.dimension()):
-                for k in range(self.dimension()):
-                    x = self.monomial(i)
-                    y = self.monomial(j)
-                    z = self.monomial(k)
-                    diff = (x*y).inner_product(z) - x.inner_product(y*z)
-
-                    if self.base_ring().is_exact():
-                        if diff != 0:
-                            return False
-                    else:
-                        if diff.abs() > epsilon:
-                            return False
-
-        return True
 
     @cached_method
     def characteristic_polynomial_of(self):
@@ -393,7 +784,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: J = HadamardEJA(2)
             sage: J.coordinate_polynomial_ring()
             Multivariate Polynomial Ring in X1, X2...
-            sage: J = RealSymmetricEJA(3,QQ)
+            sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
             sage: J.coordinate_polynomial_ring()
             Multivariate Polynomial Ring in X1, X2, X3, X4, X5, X6...
 
@@ -497,23 +888,28 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: J = JordanSpinEJA(4)
             sage: J.multiplication_table()
             +----++----+----+----+----+
-            | *  || e0 | e1 | e2 | e3 |
+            | *  || b0 | b1 | b2 | b3 |
             +====++====+====+====+====+
-            | e0 || e0 | e1 | e2 | e3 |
+            | b0 || b0 | b1 | b2 | b3 |
             +----++----+----+----+----+
-            | e1 || e1 | e0 | 0  | 0  |
+            | b1 || b1 | b0 | 0  | 0  |
             +----++----+----+----+----+
-            | e2 || e2 | 0  | e0 | 0  |
+            | b2 || b2 | 0  | b0 | 0  |
             +----++----+----+----+----+
-            | e3 || e3 | 0  | 0  | e0 |
+            | b3 || b3 | 0  | 0  | b0 |
             +----++----+----+----+----+
 
         """
-        M = list(self._multiplication_table) # copy
-        for i in range(len(M)):
-            # M had better be "square"
-            M[i] = [self.monomial(i)] + M[i]
-        M = [["*"] + list(self.gens())] + M
+        n = self.dimension()
+        # Prepend the header row.
+        M = [["*"] + list(self.gens())]
+
+        # And to each subsequent row, prepend an entry that belongs to
+        # the left-side "header column."
+        M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
+                                    for j in range(n) ]
+               for i in range(n) ]
+
         return table(M, header_row=True, header_column=True, frame=True)
 
 
@@ -541,7 +937,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         Why implement this for non-matrix algebras? Avoiding special
         cases for the :class:`BilinearFormEJA` pays with simplicity in
         its own right. But mainly, we would like to be able to assume
-        that elements of a :class:`DirectSumEJA` can be displayed
+        that elements of a :class:`CartesianProductEJA` can be displayed
         nicely, without having to have special classes for direct sums
         one of whose components was a matrix algebra.
 
@@ -554,7 +950,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
             sage: J = RealSymmetricEJA(2)
             sage: J.basis()
-            Finite family {0: e0, 1: e1, 2: e2}
+            Finite family {0: b0, 1: b1, 2: b2}
             sage: J.matrix_basis()
             (
             [1 0]  [                  0 0.7071067811865475?]  [0 0]
@@ -565,18 +961,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
             sage: J = JordanSpinEJA(2)
             sage: J.basis()
-            Finite family {0: e0, 1: e1}
+            Finite family {0: b0, 1: b1}
             sage: J.matrix_basis()
             (
             [1]  [0]
             [0], [1]
             )
         """
-        if self._matrix_basis is None:
-            M = self.matrix_space()
-            return tuple( M(b.to_vector()) for b in self.basis() )
-        else:
-            return self._matrix_basis
+        return self._matrix_basis
 
 
     def matrix_space(self):
@@ -585,19 +977,54 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         we think of them as matrices (including column vectors of the
         appropriate size).
 
-        Generally this will be an `n`-by-`1` column-vector space,
+        "By default" this will be an `n`-by-`1` column-matrix space,
         except when the algebra is trivial. There it's `n`-by-`n`
         (where `n` is zero), to ensure that two elements of the matrix
-        space (empty matrices) can be multiplied.
+        space (empty matrices) can be multiplied. For algebras of
+        matrices, this returns the space in which their
+        real embeddings live.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  JordanSpinEJA,
+            ....:                                  QuaternionHermitianEJA,
+            ....:                                  TrivialEJA)
+
+        EXAMPLES:
+
+        By default, the matrix representation is just a column-matrix
+        equivalent to the vector representation::
+
+            sage: J = JordanSpinEJA(3)
+            sage: J.matrix_space()
+            Full MatrixSpace of 3 by 1 dense matrices over Algebraic
+            Real Field
+
+        The matrix representation in the trivial algebra is
+        zero-by-zero instead of the usual `n`-by-one::
+
+            sage: J = TrivialEJA()
+            sage: J.matrix_space()
+            Full MatrixSpace of 0 by 0 dense matrices over Algebraic
+            Real Field
+
+        The matrix space for complex/quaternion Hermitian matrix EJA
+        is the space in which their real-embeddings live, not the
+        original complex/quaternion matrix space::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
+            sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
+            sage: J.matrix_space()
+            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
 
-        Matrix algebras override this with something more useful.
         """
         if self.is_trivial():
             return MatrixSpace(self.base_ring(), 0)
-        elif self._matrix_basis is None or len(self._matrix_basis) == 0:
-            return MatrixSpace(self.base_ring(), self.dimension(), 1)
         else:
-            return self._matrix_basis[0].matrix_space()
+            return self.matrix_basis()[0].parent()
 
 
     @cached_method
@@ -610,23 +1037,57 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: from mjo.eja.eja_algebra import (HadamardEJA,
             ....:                                  random_eja)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        We can compute unit element in the Hadamard EJA::
 
             sage: J = HadamardEJA(5)
             sage: J.one()
-            e0 + e1 + e2 + e3 + e4
+            b0 + b1 + b2 + b3 + b4
+
+        The unit element in the Hadamard EJA is inherited in the
+        subalgebras generated by its elements::
+
+            sage: J = HadamardEJA(5)
+            sage: J.one()
+            b0 + b1 + b2 + b3 + b4
+            sage: x = sum(J.gens())
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: A.one()
+            c0
+            sage: A.one().superalgebra_element()
+            b0 + b1 + b2 + b3 + b4
 
         TESTS:
 
-        The identity element acts like the identity::
+        The identity element acts like the identity, regardless of
+        whether or not we orthonormalize::
 
             sage: set_random_seed()
             sage: J = random_eja()
             sage: x = J.random_element()
             sage: J.one()*x == x and x*J.one() == x
             True
+            sage: A = x.subalgebra_generated_by()
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
+
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: x = J.random_element()
+            sage: J.one()*x == x and x*J.one() == x
+            True
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: y = A.random_element()
+            sage: A.one()*y == y and y*A.one() == y
+            True
 
-        The matrix of the unit element's operator is the identity::
+        The matrix of the unit element's operator is the identity,
+        regardless of the base field and whether or not we
+        orthonormalize::
 
             sage: set_random_seed()
             sage: J = random_eja()
@@ -634,6 +1095,27 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: expected = matrix.identity(J.base_ring(), J.dimension())
             sage: actual == expected
             True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by()
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
+
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: actual = J.one().operator().matrix()
+            sage: expected = matrix.identity(J.base_ring(), J.dimension())
+            sage: actual == expected
+            True
+            sage: x = J.random_element()
+            sage: A = x.subalgebra_generated_by(orthonormalize=False)
+            sage: actual = A.one().operator().matrix()
+            sage: expected = matrix.identity(A.base_ring(), A.dimension())
+            sage: actual == expected
+            True
 
         Ensure that the cached unit element (often precomputed by
         hand) agrees with the computed one::
@@ -645,6 +1127,15 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
             sage: J.one() == cached
             True
 
+        ::
+
+            sage: set_random_seed()
+            sage: J = random_eja(field=QQ, orthonormalize=False)
+            sage: cached = J.one()
+            sage: J.one.clear_cache()
+            sage: J.one() == cached
+            True
+
         """
         # We can brute-force compute the matrices of the operators
         # that correspond to the basis elements of this algebra.
@@ -789,14 +1280,12 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         if not c.is_idempotent():
             raise ValueError("element is not idempotent: %s" % c)
 
-        from mjo.eja.eja_subalgebra import FiniteDimensionalEuclideanJordanSubalgebra
-
         # Default these to what they should be if they turn out to be
         # trivial, because eigenspaces_left() won't return eigenvalues
         # corresponding to trivial spaces (e.g. it returns only the
         # eigenspace corresponding to lambda=1 if you take the
         # decomposition relative to the identity element).
-        trivial = FiniteDimensionalEuclideanJordanSubalgebra(self, ())
+        trivial = self.subalgebra(())
         J0 = trivial                          # eigenvalue zero
         J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
         J1 = trivial                          # eigenvalue one
@@ -806,9 +1295,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
                 J5 = eigspace
             else:
                 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
-                subalg = FiniteDimensionalEuclideanJordanSubalgebra(self,
-                                                                    gens,
-                                                                    check_axioms=False)
+                subalg = self.subalgebra(gens, check_axioms=False)
                 if eigval == 0:
                     J0 = subalg
                 elif eigval == 1:
@@ -897,6 +1384,21 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         r"""
         The `r` polynomial coefficients of the "characteristic polynomial
         of" function.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import random_eja
+
+        TESTS:
+
+        The theory shows that these are all homogeneous polynomials of
+        a known degree::
+
+            sage: set_random_seed()
+            sage: J = random_eja()
+            sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
+            True
+
         """
         n = self.dimension()
         R = self.coordinate_polynomial_ring()
@@ -932,10 +1434,17 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
         # The theory says that only the first "r" coefficients are
         # nonzero, and they actually live in the original polynomial
-        # ring and not the fraction field. We negate them because
-        # in the actual characteristic polynomial, they get moved
-        # to the other side where x^r lives.
-        return -A_rref.solve_right(E*b).change_ring(R)[:r]
+        # ring and not the fraction field. We negate them because in
+        # the actual characteristic polynomial, they get moved to the
+        # other side where x^r lives. We don't bother to trim A_rref
+        # down to a square matrix and solve the resulting system,
+        # because the upper-left r-by-r portion of A_rref is
+        # guaranteed to be the identity matrix, so e.g.
+        #
+        #   A_rref.solve_right(Y)
+        #
+        # would just be returning Y.
+        return (-E*b)[:r].change_ring(R)
 
     @cached_method
     def rank(self):
@@ -996,7 +1505,7 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
 
             sage: set_random_seed()    # long time
             sage: J = random_eja()     # long time
-            sage: caches = J.rank()    # long time
+            sage: cached = J.rank()    # long time
             sage: J.rank.clear_cache() # long time
             sage: J.rank() == cached   # long time
             True
@@ -1005,6 +1514,14 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         return len(self._charpoly_coefficients())
 
 
+    def subalgebra(self, basis, **kwargs):
+        r"""
+        Create a subalgebra of this algebra from the given basis.
+        """
+        from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
+        return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
+
+
     def vector_space(self):
         """
         Return the vector space that underlies this algebra.
@@ -1023,104 +1540,75 @@ class FiniteDimensionalEuclideanJordanAlgebra(CombinatorialFreeModule):
         return self.zero().to_vector().parent().ambient_vector_space()
 
 
-    Element = FiniteDimensionalEuclideanJordanAlgebraElement
 
-class RationalBasisEuclideanJordanAlgebraNg(FiniteDimensionalEuclideanJordanAlgebra):
-    def __init__(self,
-                 field,
-                 basis,
-                 jordan_product,
-                 inner_product,
-                 orthonormalize=True,
-                 prefix='e',
-                 category=None,
-                 check_field=True,
-                 check_axioms=True):
-
-        n = len(basis)
-        vector_basis = basis
-
-        from sage.structure.element import is_Matrix
-        basis_is_matrices = False
-
-        degree = 0
-        if n > 0:
-            if is_Matrix(basis[0]):
-                basis_is_matrices = True
-                vector_basis = tuple( map(_mat2vec,basis) )
-                degree = basis[0].nrows()**2
-            else:
-                degree = basis[0].degree()
+class RationalBasisEJA(FiniteDimensionalEJA):
+    r"""
+    New class for algebras whose supplied basis elements have all rational entries.
 
-        V = VectorSpace(field, degree)
+    SETUP::
 
-        # Compute this from "Q" (obtained from Gram-Schmidt) below as
-        # R = Q.solve_right(A), where the rows of "Q" are the
-        # orthonormalized vector_basis and and the rows of "A" are the
-        # original vector_basis.
-        self._deorthonormalization_matrix = None
+        sage: from mjo.eja.eja_algebra import BilinearFormEJA
 
-        if orthonormalize:
-            from mjo.eja.eja_utils import gram_schmidt
-            vector_basis = gram_schmidt(vector_basis, inner_product)
-            W = V.span_of_basis( vector_basis )
-            if basis_is_matrices:
-                from mjo.eja.eja_utils import _vec2mat
-                basis = tuple( map(_vec2mat,vector_basis) )
+    EXAMPLES:
 
-        W = V.span_of_basis( vector_basis )
+    The supplied basis is orthonormalized by default::
 
-        mult_table = [ [0 for i in range(n)] for j in range(n) ]
-        ip_table = [ [0 for i in range(n)] for j in range(n) ]
+        sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
+        sage: J = BilinearFormEJA(B)
+        sage: J.matrix_basis()
+        (
+        [1]  [  0]  [   0]
+        [0]  [1/5]  [32/5]
+        [0], [  0], [   5]
+        )
 
-        for i in range(n):
-            for j in range(i+1):
-                # do another mat2vec because the multiplication
-                # table is in terms of vectors
-                elt = _mat2vec(jordan_product(basis[i],basis[j]))
-                elt = W.coordinate_vector(elt)
-                mult_table[i][j] = elt
-                mult_table[j][i] = elt
-                ip = inner_product(basis[i],basis[j])
-                ip_table[i][j] = ip
-                ip_table[j][i] = ip
-
-        self._inner_product_matrix = matrix(field,ip_table)
-
-        if basis_is_matrices:
-            for m in basis:
-                m.set_immutable()
-        else:
-            basis = tuple( x.column() for x in basis )
+    """
+    def __init__(self,
+                 basis,
+                 jordan_product,
+                 inner_product,
+                 field=AA,
+                 check_field=True,
+                 **kwargs):
 
-        super().__init__(field,
-                         mult_table,
-                         prefix,
-                         category,
-                         basis, # matrix basis
-                         check_field,
-                         check_axioms)
+        if check_field:
+            # Abuse the check_field parameter to check that the entries of
+            # out basis (in ambient coordinates) are in the field QQ.
+            if not all( all(b_i in QQ for b_i in b.list()) for b in basis ):
+                raise TypeError("basis not rational")
+
+        super().__init__(basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         check_field=check_field,
+                         **kwargs)
+
+        self._rational_algebra = None
+        if field is not QQ:
+            # There's no point in constructing the extra algebra if this
+            # one is already rational.
+            #
+            # Note: the same Jordan and inner-products work here,
+            # because they are necessarily defined with respect to
+            # ambient coordinates and not any particular basis.
+            self._rational_algebra = FiniteDimensionalEJA(
+                                       basis,
+                                       jordan_product,
+                                       inner_product,
+                                       field=QQ,
+                                       associative=self.is_associative(),
+                                       orthonormalize=False,
+                                       check_field=False,
+                                       check_axioms=False)
 
-class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
-    r"""
-    Algebras whose basis consists of vectors with rational
-    entries. Equivalently, algebras whose multiplication tables
-    contain only rational coefficients.
-
-    When an EJA has a basis that can be made rational, we can speed up
-    the computation of its characteristic polynomial by doing it over
-    ``QQ``. All of the named EJA constructors that we provide fall
-    into this category.
-    """
     @cached_method
     def _charpoly_coefficients(self):
         r"""
-        Override the parent method with something that tries to compute
-        over a faster (non-extension) field.
-
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import JordanSpinEJA
+            sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
+            ....:                                  JordanSpinEJA)
 
         EXAMPLES:
 
@@ -1138,29 +1626,37 @@ class RationalBasisEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebr
             Algebraic Real Field
 
         """
-        if self.base_ring() is QQ:
+        if self._rational_algebra is None:
             # There's no need to construct *another* algebra over the
-            # rationals if this one is already over the rationals.
-            superclass = super(RationalBasisEuclideanJordanAlgebra, self)
-            return superclass._charpoly_coefficients()
-
-        mult_table = tuple(
-            tuple(map(lambda x: x.to_vector(), ls))
-            for ls in self._multiplication_table
-        )
+            # rationals if this one is already over the
+            # rationals. Likewise, if we never orthonormalized our
+            # basis, we might as well just use the given one.
+            return super()._charpoly_coefficients()
 
         # Do the computation over the rationals. The answer will be
-        # the same, because our basis coordinates are (essentially)
-        # rational.
-        J = FiniteDimensionalEuclideanJordanAlgebra(QQ,
-                                                    mult_table,
-                                                    check_field=False,
-                                                    check_axioms=False)
-        a = J._charpoly_coefficients()
-        return tuple(map(lambda x: x.change_ring(self.base_ring()), a))
+        # the same, because all we've done is a change of basis.
+        # Then, change back from QQ to our real base ring
+        a = ( a_i.change_ring(self.base_ring())
+              for a_i in self._rational_algebra._charpoly_coefficients() )
+
+        if self._deortho_matrix is None:
+            # This can happen if our base ring was, say, AA and we
+            # chose not to (or didn't need to) orthonormalize. It's
+            # still faster to do the computations over QQ even if
+            # the numbers in the boxes stay the same.
+            return tuple(a)
+
+        # Otherwise, convert the coordinate variables back to the
+        # deorthonormalized ones.
+        R = self.coordinate_polynomial_ring()
+        from sage.modules.free_module_element import vector
+        X = vector(R, R.gens())
+        BX = self._deortho_matrix*X
 
+        subs_dict = { X[i]: BX[i] for i in range(len(X)) }
+        return tuple( a_i.subs(subs_dict) for a_i in a )
 
-class ConcreteEuclideanJordanAlgebra:
+class ConcreteEJA(RationalBasisEJA):
     r"""
     A class for the Euclidean Jordan algebras that we know by name.
 
@@ -1171,7 +1667,7 @@ class ConcreteEuclideanJordanAlgebra:
 
     SETUP::
 
-        sage: from mjo.eja.eja_algebra import ConcreteEuclideanJordanAlgebra
+        sage: from mjo.eja.eja_algebra import ConcreteEJA
 
     TESTS:
 
@@ -1179,7 +1675,7 @@ class ConcreteEuclideanJordanAlgebra:
     product, unless we specify otherwise::
 
         sage: set_random_seed()
-        sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
+        sage: J = ConcreteEJA.random_instance()
         sage: all( b.norm() == 1 for b in J.gens() )
         True
 
@@ -1190,7 +1686,7 @@ class ConcreteEuclideanJordanAlgebra:
     EJA the operator is self-adjoint by the Jordan axiom::
 
         sage: set_random_seed()
-        sage: J = ConcreteEuclideanJordanAlgebra.random_instance()
+        sage: J = ConcreteEJA.random_instance()
         sage: x = J.random_element()
         sage: x.operator().is_self_adjoint()
         True
@@ -1213,7 +1709,7 @@ class ConcreteEuclideanJordanAlgebra:
         raise NotImplementedError
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, *args, **kwargs):
         """
         Return a random instance of this type of algebra.
 
@@ -1221,134 +1717,46 @@ class ConcreteEuclideanJordanAlgebra:
         """
         from sage.misc.prandom import choice
         eja_class = choice(cls.__subclasses__())
-        return eja_class.random_instance(field)
-
-
-class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
-
-    def __init__(self, field, basis, normalize_basis=True, **kwargs):
-        """
-        Compared to the superclass constructor, we take a basis instead of
-        a multiplication table because the latter can be computed in terms
-        of the former when the product is known (like it is here).
-        """
-        # Used in this class's fast _charpoly_coefficients() override.
-        self._basis_normalizers = None
-
-        # We're going to loop through this a few times, so now's a good
-        # time to ensure that it isn't a generator expression.
-        basis = tuple(basis)
-
-        algebra_dim = len(basis)
-        degree = 0 # size of the matrices
-        if algebra_dim > 0:
-            degree = basis[0].nrows()
 
-        if algebra_dim > 1 and normalize_basis:
-            # We'll need sqrt(2) to normalize the basis, and this
-            # winds up in the multiplication table, so the whole
-            # algebra needs to be over the field extension.
-            R = PolynomialRing(field, 'z')
-            z = R.gen()
-            p = z**2 - 2
-            if p.is_irreducible():
-                field = field.extension(p, 'sqrt2', embedding=RLF(2).sqrt())
-                basis = tuple( s.change_ring(field) for s in basis )
-            self._basis_normalizers = tuple(
-                ~(self.matrix_inner_product(s,s).sqrt()) for s in basis )
-            basis = tuple(s*c for (s,c) in zip(basis,self._basis_normalizers))
-
-        # Now compute the multiplication and inner product tables.
-        # We have to do this *after* normalizing the basis, because
-        # scaling affects the answers.
-        V = VectorSpace(field, degree**2)
-        W = V.span_of_basis( _mat2vec(s) for s in basis )
-        mult_table = [[W.zero() for j in range(algebra_dim)]
-                                for i in range(algebra_dim)]
-        ip_table = [[W.zero() for j in range(algebra_dim)]
-                              for i in range(algebra_dim)]
-        for i in range(algebra_dim):
-            for j in range(algebra_dim):
-                mat_entry = (basis[i]*basis[j] + basis[j]*basis[i])/2
-                mult_table[i][j] = W.coordinate_vector(_mat2vec(mat_entry))
-
-                try:
-                    # HACK: ignore the error here if we don't need the
-                    # inner product (as is the case when we construct
-                    # a dummy QQ-algebra for fast charpoly coefficients.
-                    ip_table[i][j] = self.matrix_inner_product(basis[i],
-                                                                basis[j])
-                except:
-                    pass
-
-        try:
-            # HACK PART DEUX
-            self._inner_product_matrix = matrix(field,ip_table)
-        except:
-            pass
+        # These all bubble up to the RationalBasisEJA superclass
+        # constructor, so any (kw)args valid there are also valid
+        # here.
+        return eja_class.random_instance(*args, **kwargs)
 
-        super(MatrixEuclideanJordanAlgebra, self).__init__(field,
-                                                           mult_table,
-                                                           matrix_basis=basis,
-                                                           **kwargs)
 
-        if algebra_dim == 0:
-            self.one.set_cache(self.zero())
-        else:
-            n = basis[0].nrows()
-            # The identity wrt (A,B) -> (AB + BA)/2 is independent of the
-            # details of this algebra.
-            self.one.set_cache(self(matrix.identity(field,n)))
+class MatrixEJA:
+    @staticmethod
+    def jordan_product(X,Y):
+        return (X*Y + Y*X)/2
 
+    @staticmethod
+    def trace_inner_product(X,Y):
+        r"""
+        A trace inner-product for matrices that aren't embedded in the
+        reals.
+        """
+        # We take the norm (absolute value) because Octonions() isn't
+        # smart enough yet to coerce its one() into the base field.
+        return (X*Y).trace().abs()
 
-    @cached_method
-    def _charpoly_coefficients(self):
+class RealEmbeddedMatrixEJA(MatrixEJA):
+    @staticmethod
+    def dimension_over_reals():
         r"""
-        Override the parent method with something that tries to compute
-        over a faster (non-extension) field.
-        """
-        if self._basis_normalizers is None or self.base_ring() is QQ:
-            # We didn't normalize, or the basis we started with had
-            # entries in a nice field already. Just compute the thing.
-            return super(MatrixEuclideanJordanAlgebra, self)._charpoly_coefficients()
-
-        basis = ( (b/n) for (b,n) in zip(self.matrix_basis(),
-                                         self._basis_normalizers) )
-
-        # Do this over the rationals and convert back at the end.
-        # Only works because we know the entries of the basis are
-        # integers. The argument ``check_axioms=False`` is required
-        # because the trace inner-product method for this
-        # class is a stub and can't actually be checked.
-        J = MatrixEuclideanJordanAlgebra(QQ,
-                                         basis,
-                                         normalize_basis=False,
-                                         check_field=False,
-                                         check_axioms=False)
-        a = J._charpoly_coefficients()
-
-        # Unfortunately, changing the basis does change the
-        # coefficients of the characteristic polynomial, but since
-        # these are really the coefficients of the "characteristic
-        # polynomial of" function, everything is still nice and
-        # unevaluated. It's therefore "obvious" how scaling the
-        # basis affects the coordinate variables X1, X2, et
-        # cetera. Scaling the first basis vector up by "n" adds a
-        # factor of 1/n into every "X1" term, for example. So here
-        # we simply undo the basis_normalizer scaling that we
-        # performed earlier.
-        #
-        # The a[0] access here is safe because trivial algebras
-        # won't have any basis normalizers and therefore won't
-        # make it to this "else" branch.
-        XS = a[0].parent().gens()
-        subs_dict = { XS[i]: self._basis_normalizers[i]*XS[i]
-                      for i in range(len(XS)) }
-        return tuple( a_i.subs(subs_dict) for a_i in a )
+        The dimension of this matrix's base ring over the reals.
 
+        The reals are dimension one over themselves, obviously; that's
+        just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
+        have dimension two. Finally, the quaternions have dimension
+        four over the reals.
 
-    @staticmethod
-    def real_embed(M):
+        This is used to determine the size of the matrix returned from
+        :meth:`real_embed`, among other things.
+        """
+        raise NotImplementedError
+
+    @classmethod
+    def real_embed(cls,M):
         """
         Embed the matrix ``M`` into a space of real matrices.
 
@@ -1361,52 +1769,71 @@ class MatrixEuclideanJordanAlgebra(FiniteDimensionalEuclideanJordanAlgebra):
           real_embed(M*N) = real_embed(M)*real_embed(N)
 
         """
-        raise NotImplementedError
+        if M.ncols() != M.nrows():
+            raise ValueError("the matrix 'M' must be square")
+        return M
 
 
-    @staticmethod
-    def real_unembed(M):
+    @classmethod
+    def real_unembed(cls,M):
         """
         The inverse of :meth:`real_embed`.
         """
-        raise NotImplementedError
+        if M.ncols() != M.nrows():
+            raise ValueError("the matrix 'M' must be square")
+        if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
+            raise ValueError("the matrix 'M' must be a real embedding")
+        return M
+
 
     @classmethod
-    def matrix_inner_product(cls,X,Y):
-        Xu = cls.real_unembed(X)
-        Yu = cls.real_unembed(Y)
-        tr = (Xu*Yu).trace()
+    def trace_inner_product(cls,X,Y):
+        r"""
+        Compute the trace inner-product of two real-embeddings.
 
-        try:
-            # Works in QQ, AA, RDF, et cetera.
-            return tr.real()
-        except AttributeError:
-            # A quaternion doesn't have a real() method, but does
-            # have coefficient_tuple() method that returns the
-            # coefficients of 1, i, j, and k -- in that order.
-            return tr.coefficient_tuple()[0]
+        SETUP::
 
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  QuaternionHermitianEJA)
 
-class RealMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
-    @staticmethod
-    def real_embed(M):
-        """
-        The identity function, for embedding real matrices into real
-        matrices.
-        """
-        return M
+        EXAMPLES::
 
-    @staticmethod
-    def real_unembed(M):
-        """
-        The identity function, for unembedding real matrices from real
-        matrices.
-        """
-        return M
+            sage: set_random_seed()
+            sage: J = ComplexHermitianEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: Xe = x.to_matrix()
+            sage: Ye = y.to_matrix()
+            sage: X = J.real_unembed(Xe)
+            sage: Y = J.real_unembed(Ye)
+            sage: expected = (X*Y).trace().real()
+            sage: actual = J.trace_inner_product(Xe,Ye)
+            sage: actual == expected
+            True
+
+        ::
+
+            sage: set_random_seed()
+            sage: J = QuaternionHermitianEJA.random_instance()
+            sage: x,y = J.random_elements(2)
+            sage: Xe = x.to_matrix()
+            sage: Ye = y.to_matrix()
+            sage: X = J.real_unembed(Xe)
+            sage: Y = J.real_unembed(Ye)
+            sage: expected = (X*Y).trace().coefficient_tuple()[0]
+            sage: actual = J.trace_inner_product(Xe,Ye)
+            sage: actual == expected
+            True
 
+        """
+        # This does in fact compute the real part of the trace.
+        # If we compute the trace of e.g. a complex matrix M,
+        # then we do so by adding up its diagonal entries --
+        # call them z_1 through z_n. The real embedding of z_1
+        # will be a 2-by-2 REAL matrix [a, b; -b, a] whose trace
+        # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
+        return (X*Y).trace()/cls.dimension_over_reals()
 
-class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra,
-                       ConcreteEuclideanJordanAlgebra):
+class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -1419,19 +1846,19 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra,
     EXAMPLES::
 
         sage: J = RealSymmetricEJA(2)
-        sage: e0, e1, e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e1*e1
-        1/2*e0 + 1/2*e2
-        sage: e2*e2
-        e2
+        sage: b0, b1, b2 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b1*b1
+        1/2*b0 + 1/2*b2
+        sage: b2*b2
+        b2
 
     In theory, our "field" can be any subfield of the reals::
 
-        sage: RealSymmetricEJA(2, RDF)
+        sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
         Euclidean Jordan algebra of dimension 3 over Real Double Field
-        sage: RealSymmetricEJA(2, RR)
+        sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
         Euclidean Jordan algebra of dimension 3 over Real Field with
         53 bits of precision
 
@@ -1484,7 +1911,7 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra,
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: B = RealSymmetricEJA._denormalized_basis(n,QQ)
+            sage: B = RealSymmetricEJA._denormalized_basis(n,ZZ)
             sage: all( M.is_symmetric() for M in  B)
             True
 
@@ -1500,7 +1927,7 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra,
                 else:
                     Sij = Eij + Eij.transpose()
                 S.append(Sij)
-        return S
+        return tuple(S)
 
 
     @staticmethod
@@ -1508,25 +1935,77 @@ class RealSymmetricEJA(RealMatrixEuclideanJordanAlgebra,
         return 4 # Dimension 10
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
-        return cls(n, field, **kwargs)
+        return cls(n, **kwargs)
 
     def __init__(self, n, field=AA, **kwargs):
-        basis = self._denormalized_basis(n, field)
-        super(RealSymmetricEJA, self).__init__(field,
-                                               basis,
-                                               check_axioms=False,
-                                               **kwargs)
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+
+        # TODO: this could be factored out somehow, but is left here
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
+        idV = self.matrix_space().one()
+        self.one.set_cache(self(idV))
+
+
+
+class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
+    # A manual dictionary-cache for the complex_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _complex_extension = {}
+
+    @classmethod
+    def complex_extension(cls,field):
+        r"""
+        The complex field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._complex_extension:
+            return cls._complex_extension[field]
+
+        # Sage doesn't know how to adjoin the complex "i" (the root of
+        # x^2 + 1) to a field in a general way. Here, we just enumerate
+        # all of the cases that I have cared to support so far.
+        if field is AA:
+            # Sage doesn't know how to embed AA into QQbar, i.e. how
+            # to adjoin sqrt(-1) to AA.
+            F = QQbar
+        elif not field.is_exact():
+            # RDF or RR
+            F = field.complex_field()
+        else:
+            # Works for QQ and... maybe some other fields.
+            R = PolynomialRing(field, 'z')
+            z = R.gen()
+            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
 
+        cls._complex_extension[field] = F
+        return F
 
-class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
     @staticmethod
-    def real_embed(M):
+    def dimension_over_reals():
+        return 2
+
+    @classmethod
+    def real_embed(cls,M):
         """
         Embed the n-by-n complex matrix ``M`` into the space of real
         matrices of size 2n-by-2n via the map the sends each entry `z = a +
@@ -1534,8 +2013,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   ComplexMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
 
         EXAMPLES::
 
@@ -1545,7 +2023,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: x3 = F(-i)
             sage: x4 = F(6)
             sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
-            sage: ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
+            sage: ComplexMatrixEJA.real_embed(M)
             [ 4 -2| 1  2]
             [ 2  4|-2  1]
             [-----+-----]
@@ -1561,38 +2039,37 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: F = QuadraticField(-1, 'I')
             sage: X = random_matrix(F, n)
             sage: Y = random_matrix(F, n)
-            sage: Xe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X)
-            sage: Ye = ComplexMatrixEuclideanJordanAlgebra.real_embed(Y)
-            sage: XYe = ComplexMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+            sage: Xe = ComplexMatrixEJA.real_embed(X)
+            sage: Ye = ComplexMatrixEJA.real_embed(Y)
+            sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
             sage: Xe*Ye == XYe
             True
 
         """
+        super().real_embed(M)
         n = M.nrows()
-        if M.ncols() != n:
-            raise ValueError("the matrix 'M' must be square")
 
         # We don't need any adjoined elements...
         field = M.base_ring().base_ring()
 
         blocks = []
         for z in M.list():
-            a = z.list()[0] # real part, I guess
-            b = z.list()[1] # imag part, I guess
-            blocks.append(matrix(field, 2, [[a,b],[-b,a]]))
+            a = z.real()
+            b = z.imag()
+            blocks.append(matrix(field, 2, [ [ a, b],
+                                             [-b, a] ]))
 
         return matrix.block(field, n, blocks)
 
 
-    @staticmethod
-    def real_unembed(M):
+    @classmethod
+    def real_unembed(cls,M):
         """
         The inverse of _embed_complex_matrix().
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   ComplexMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
 
         EXAMPLES::
 
@@ -1600,7 +2077,7 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             ....:                 [-2,  1,  -4,  3],
             ....:                 [ 9,  10, 11, 12],
             ....:                 [-10, 9, -12, 11] ])
-            sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(A)
+            sage: ComplexMatrixEJA.real_unembed(A)
             [  2*I + 1   4*I + 3]
             [ 10*I + 9 12*I + 11]
 
@@ -1611,36 +2088,23 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: set_random_seed()
             sage: F = QuadraticField(-1, 'I')
             sage: M = random_matrix(F, 3)
-            sage: Me = ComplexMatrixEuclideanJordanAlgebra.real_embed(M)
-            sage: ComplexMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+            sage: Me = ComplexMatrixEJA.real_embed(M)
+            sage: ComplexMatrixEJA.real_unembed(Me) == M
             True
 
         """
+        super().real_unembed(M)
         n = ZZ(M.nrows())
-        if M.ncols() != n:
-            raise ValueError("the matrix 'M' must be square")
-        if not n.mod(2).is_zero():
-            raise ValueError("the matrix 'M' must be a complex embedding")
-
-        # If "M" was normalized, its base ring might have roots
-        # adjoined and they can stick around after unembedding.
-        field = M.base_ring()
-        R = PolynomialRing(field, 'z')
-        z = R.gen()
-        if field is AA:
-            # Sage doesn't know how to embed AA into QQbar, i.e. how
-            # to adjoin sqrt(-1) to AA.
-            F = QQbar
-        else:
-            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
+        d = cls.dimension_over_reals()
+        F = cls.complex_extension(M.base_ring())
         i = F.gen()
 
         # Go top-left to bottom-right (reading order), converting every
         # 2-by-2 block we see to a single complex element.
         elements = []
-        for k in range(n/2):
-            for j in range(n/2):
-                submat = M[2*k:2*k+2,2*j:2*j+2]
+        for k in range(n/d):
+            for j in range(n/d):
+                submat = M[d*k:d*k+d,d*j:d*j+d]
                 if submat[0,0] != submat[1,1]:
                     raise ValueError('bad on-diagonal submatrix')
                 if submat[0,1] != -submat[1,0]:
@@ -1648,42 +2112,10 @@ class ComplexMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
                 z = submat[0,0] + submat[0,1]*i
                 elements.append(z)
 
-        return matrix(F, n/2, elements)
-
+        return matrix(F, n/d, elements)
 
-    @classmethod
-    def matrix_inner_product(cls,X,Y):
-        """
-        Compute a matrix inner product in this algebra directly from
-        its real embedding.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
-
-        TESTS:
-
-        This gives the same answer as the slow, default method implemented
-        in :class:`MatrixEuclideanJordanAlgebra`::
-
-            sage: set_random_seed()
-            sage: J = ComplexHermitianEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = ComplexHermitianEJA.real_unembed(Xe)
-            sage: Y = ComplexHermitianEJA.real_unembed(Ye)
-            sage: expected = (X*Y).trace().real()
-            sage: actual = ComplexHermitianEJA.matrix_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
-
-        """
-        return RealMatrixEuclideanJordanAlgebra.matrix_inner_product(X,Y)/2
 
-
-class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra,
-                          ConcreteEuclideanJordanAlgebra):
+class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -1698,9 +2130,9 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra,
 
     In theory, our "field" can be any subfield of the reals::
 
-        sage: ComplexHermitianEJA(2, RDF)
+        sage: ComplexHermitianEJA(2, field=RDF, check_axioms=True)
         Euclidean Jordan algebra of dimension 4 over Real Double Field
-        sage: ComplexHermitianEJA(2, RR)
+        sage: ComplexHermitianEJA(2, field=RR, check_axioms=True)
         Euclidean Jordan algebra of dimension 4 over Real Field with
         53 bits of precision
 
@@ -1760,16 +2192,15 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra,
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: field = QuadraticField(2, 'sqrt2')
-            sage: B = ComplexHermitianEJA._denormalized_basis(n, field)
+            sage: B = ComplexHermitianEJA._denormalized_basis(n,ZZ)
             sage: all( M.is_symmetric() for M in  B)
             True
 
         """
-        R = PolynomialRing(field, 'z')
+        R = PolynomialRing(ZZ, 'z')
         z = R.gen()
-        F = field.extension(z**2 + 1, 'I')
-        I = F.gen()
+        F = ZZ.extension(z**2 + 1, 'I')
+        I = F.gen(1)
 
         # This is like the symmetric case, but we need to be careful:
         #
@@ -1777,47 +2208,93 @@ class ComplexHermitianEJA(ComplexMatrixEuclideanJordanAlgebra,
         #   * The diagonal will (as a result) be real.
         #
         S = []
+        Eij = matrix.zero(F,n)
         for i in range(n):
             for j in range(i+1):
-                Eij = matrix(F, n, lambda k,l: k==i and l==j)
+                # "build" E_ij
+                Eij[i,j] = 1
                 if i == j:
                     Sij = cls.real_embed(Eij)
                     S.append(Sij)
                 else:
                     # The second one has a minus because it's conjugated.
-                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
+                    Sij_real = cls.real_embed(Eij)
                     S.append(Sij_real)
-                    Sij_imag = cls.real_embed(I*Eij - I*Eij.transpose())
+                    # Eij = I*Eij - I*Eij.transpose()
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_imag = cls.real_embed(Eij)
                     S.append(Sij_imag)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
 
-        # Since we embedded these, we can drop back to the "field" that we
-        # started with instead of the complex extension "F".
-        return ( s.change_ring(field) for s in S )
+        # Since we embedded the entries, we can drop back to the
+        # desired real "field" instead of the extension "F".
+        return tuple( s.change_ring(field) for s in S )
 
 
     def __init__(self, n, field=AA, **kwargs):
-        basis = self._denormalized_basis(n,field)
-        super(ComplexHermitianEJA,self).__init__(field,
-                                                 basis,
-                                                 check_axioms=False,
-                                                 **kwargs)
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+        # TODO: this could be factored out somehow, but is left here
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
+        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        self.one.set_cache(self(idV))
 
     @staticmethod
     def _max_random_instance_size():
         return 3 # Dimension 9
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
-        return cls(n, field, **kwargs)
+        return cls(n, **kwargs)
+
+class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
+
+    # A manual dictionary-cache for the quaternion_extension() method,
+    # since apparently @classmethods can't also be @cached_methods.
+    _quaternion_extension = {}
+
+    @classmethod
+    def quaternion_extension(cls,field):
+        r"""
+        The quaternion field that we embed/unembed, as an extension
+        of the given ``field``.
+        """
+        if field in cls._quaternion_extension:
+            return cls._quaternion_extension[field]
+
+        Q = QuaternionAlgebra(field,-1,-1)
+
+        cls._quaternion_extension[field] = Q
+        return Q
 
-class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
     @staticmethod
-    def real_embed(M):
+    def dimension_over_reals():
+        return 4
+
+    @classmethod
+    def real_embed(cls,M):
         """
         Embed the n-by-n quaternion matrix ``M`` into the space of real
         matrices of size 4n-by-4n by first sending each quaternion entry `z
@@ -1827,8 +2304,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   QuaternionMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
 
         EXAMPLES::
 
@@ -1836,7 +2312,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: i,j,k = Q.gens()
             sage: x = 1 + 2*i + 3*j + 4*k
             sage: M = matrix(Q, 1, [[x]])
-            sage: QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
+            sage: QuaternionMatrixEJA.real_embed(M)
             [ 1  2  3  4]
             [-2  1 -4  3]
             [-3  4  1 -2]
@@ -1849,17 +2325,16 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: Q = QuaternionAlgebra(QQ,-1,-1)
             sage: X = random_matrix(Q, n)
             sage: Y = random_matrix(Q, n)
-            sage: Xe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X)
-            sage: Ye = QuaternionMatrixEuclideanJordanAlgebra.real_embed(Y)
-            sage: XYe = QuaternionMatrixEuclideanJordanAlgebra.real_embed(X*Y)
+            sage: Xe = QuaternionMatrixEJA.real_embed(X)
+            sage: Ye = QuaternionMatrixEJA.real_embed(Y)
+            sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
             sage: Xe*Ye == XYe
             True
 
         """
+        super().real_embed(M)
         quaternions = M.base_ring()
         n = M.nrows()
-        if M.ncols() != n:
-            raise ValueError("the matrix 'M' must be square")
 
         F = QuadraticField(-1, 'I')
         i = F.gen()
@@ -1873,7 +2348,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             d = t[3]
             cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
                                  [-c + d*i, a - b*i]])
-            realM = ComplexMatrixEuclideanJordanAlgebra.real_embed(cplxM)
+            realM = ComplexMatrixEJA.real_embed(cplxM)
             blocks.append(realM)
 
         # We should have real entries by now, so use the realest field
@@ -1882,15 +2357,14 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
 
 
 
-    @staticmethod
-    def real_unembed(M):
+    @classmethod
+    def real_unembed(cls,M):
         """
         The inverse of _embed_quaternion_matrix().
 
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import \
-            ....:   QuaternionMatrixEuclideanJordanAlgebra
+            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
 
         EXAMPLES::
 
@@ -1898,7 +2372,7 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             ....:                 [-2,  1, -4,  3],
             ....:                 [-3,  4,  1, -2],
             ....:                 [-4, -3,  2,  1]])
-            sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(M)
+            sage: QuaternionMatrixEJA.real_unembed(M)
             [1 + 2*i + 3*j + 4*k]
 
         TESTS:
@@ -1908,31 +2382,28 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
             sage: set_random_seed()
             sage: Q = QuaternionAlgebra(QQ, -1, -1)
             sage: M = random_matrix(Q, 3)
-            sage: Me = QuaternionMatrixEuclideanJordanAlgebra.real_embed(M)
-            sage: QuaternionMatrixEuclideanJordanAlgebra.real_unembed(Me) == M
+            sage: Me = QuaternionMatrixEJA.real_embed(M)
+            sage: QuaternionMatrixEJA.real_unembed(Me) == M
             True
 
         """
+        super().real_unembed(M)
         n = ZZ(M.nrows())
-        if M.ncols() != n:
-            raise ValueError("the matrix 'M' must be square")
-        if not n.mod(4).is_zero():
-            raise ValueError("the matrix 'M' must be a quaternion embedding")
+        d = cls.dimension_over_reals()
 
         # Use the base ring of the matrix to ensure that its entries can be
         # multiplied by elements of the quaternion algebra.
-        field = M.base_ring()
-        Q = QuaternionAlgebra(field,-1,-1)
+        Q = cls.quaternion_extension(M.base_ring())
         i,j,k = Q.gens()
 
         # Go top-left to bottom-right (reading order), converting every
         # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
         # quaternion block.
         elements = []
-        for l in range(n/4):
-            for m in range(n/4):
-                submat = ComplexMatrixEuclideanJordanAlgebra.real_unembed(
-                    M[4*l:4*l+4,4*m:4*m+4] )
+        for l in range(n/d):
+            for m in range(n/d):
+                submat = ComplexMatrixEJA.real_unembed(
+                    M[d*l:d*l+d,d*m:d*m+d] )
                 if submat[0,0] != submat[1,1].conjugate():
                     raise ValueError('bad on-diagonal submatrix')
                 if submat[0,1] != -submat[1,0].conjugate():
@@ -1943,42 +2414,10 @@ class QuaternionMatrixEuclideanJordanAlgebra(MatrixEuclideanJordanAlgebra):
                 z += submat[0,1].imag()*k
                 elements.append(z)
 
-        return matrix(Q, n/4, elements)
-
-
-    @classmethod
-    def matrix_inner_product(cls,X,Y):
-        """
-        Compute a matrix inner product in this algebra directly from
-        its real embedding.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
-
-        TESTS:
-
-        This gives the same answer as the slow, default method implemented
-        in :class:`MatrixEuclideanJordanAlgebra`::
+        return matrix(Q, n/d, elements)
 
-            sage: set_random_seed()
-            sage: J = QuaternionHermitianEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = QuaternionHermitianEJA.real_unembed(Xe)
-            sage: Y = QuaternionHermitianEJA.real_unembed(Ye)
-            sage: expected = (X*Y).trace().coefficient_tuple()[0]
-            sage: actual = QuaternionHermitianEJA.matrix_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
 
-        """
-        return RealMatrixEuclideanJordanAlgebra.matrix_inner_product(X,Y)/4
-
-
-class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
-                             ConcreteEuclideanJordanAlgebra):
+class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
     r"""
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -1993,9 +2432,9 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
 
     In theory, our "field" can be any subfield of the reals::
 
-        sage: QuaternionHermitianEJA(2, RDF)
+        sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
         Euclidean Jordan algebra of dimension 6 over Real Double Field
-        sage: QuaternionHermitianEJA(2, RR)
+        sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
         Euclidean Jordan algebra of dimension 6 over Real Field with
         53 bits of precision
 
@@ -2054,7 +2493,7 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
+            sage: B = QuaternionHermitianEJA._denormalized_basis(n,ZZ)
             sage: all( M.is_symmetric() for M in B )
             True
 
@@ -2068,36 +2507,68 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
         #   * The diagonal will (as a result) be real.
         #
         S = []
+        Eij = matrix.zero(Q,n)
         for i in range(n):
             for j in range(i+1):
-                Eij = matrix(Q, n, lambda k,l: k==i and l==j)
+                # "build" E_ij
+                Eij[i,j] = 1
                 if i == j:
                     Sij = cls.real_embed(Eij)
                     S.append(Sij)
                 else:
                     # The second, third, and fourth ones have a minus
                     # because they're conjugated.
-                    Sij_real = cls.real_embed(Eij + Eij.transpose())
+                    # Eij = Eij + Eij.transpose()
+                    Eij[j,i] = 1
+                    Sij_real = cls.real_embed(Eij)
                     S.append(Sij_real)
-                    Sij_I = cls.real_embed(I*Eij - I*Eij.transpose())
+                    # Eij = I*(Eij - Eij.transpose())
+                    Eij[i,j] = I
+                    Eij[j,i] = -I
+                    Sij_I = cls.real_embed(Eij)
                     S.append(Sij_I)
-                    Sij_J = cls.real_embed(J*Eij - J*Eij.transpose())
+                    # Eij = J*(Eij - Eij.transpose())
+                    Eij[i,j] = J
+                    Eij[j,i] = -J
+                    Sij_J = cls.real_embed(Eij)
                     S.append(Sij_J)
-                    Sij_K = cls.real_embed(K*Eij - K*Eij.transpose())
+                    # Eij = K*(Eij - Eij.transpose())
+                    Eij[i,j] = K
+                    Eij[j,i] = -K
+                    Sij_K = cls.real_embed(Eij)
                     S.append(Sij_K)
+                    Eij[j,i] = 0
+                # "erase" E_ij
+                Eij[i,j] = 0
 
-        # Since we embedded these, we can drop back to the "field" that we
-        # started with instead of the quaternion algebra "Q".
-        return ( s.change_ring(field) for s in S )
+        # Since we embedded the entries, we can drop back to the
+        # desired real "field" instead of the quaternion algebra "Q".
+        return tuple( s.change_ring(field) for s in S )
 
 
     def __init__(self, n, field=AA, **kwargs):
-        basis = self._denormalized_basis(n,field)
-        super(QuaternionHermitianEJA,self).__init__(field,
-                                                    basis,
-                                                    check_axioms=False,
-                                                    **kwargs)
+        # We know this is a valid EJA, but will double-check
+        # if the user passes check_axioms=True.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        associative = False
+        if n <= 1:
+            associative = True
+
+        super().__init__(self._denormalized_basis(n,field),
+                         self.jordan_product,
+                         self.trace_inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
+
+        # TODO: this could be factored out somehow, but is left here
+        # because the MatrixEJA is not presently a subclass of the
+        # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
+        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        self.one.set_cache(self(idV))
+
 
     @staticmethod
     def _max_random_instance_size():
@@ -2107,16 +2578,15 @@ class QuaternionHermitianEJA(QuaternionMatrixEuclideanJordanAlgebra,
         return 2 # Dimension 6
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
-        return cls(n, field, **kwargs)
+        return cls(n, **kwargs)
 
 
-class HadamardEJA(RationalBasisEuclideanJordanAlgebra,
-                  ConcreteEuclideanJordanAlgebra):
+class HadamardEJA(ConcreteEJA):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
@@ -2134,19 +2604,19 @@ class HadamardEJA(RationalBasisEuclideanJordanAlgebra,
     This multiplication table can be verified by hand::
 
         sage: J = HadamardEJA(3)
-        sage: e0,e1,e2 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
+        sage: b0,b1,b2 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b0*b1
         0
-        sage: e0*e2
+        sage: b0*b2
         0
-        sage: e1*e1
-        e1
-        sage: e1*e2
+        sage: b1*b1
+        b1
+        sage: b1*b2
         0
-        sage: e2*e2
-        e2
+        sage: b2*b2
+        b2
 
     TESTS:
 
@@ -2157,24 +2627,34 @@ class HadamardEJA(RationalBasisEuclideanJordanAlgebra,
 
     """
     def __init__(self, n, field=AA, **kwargs):
-        V = VectorSpace(field, n)
-        mult_table = [ [ V.gen(i)*(i == j) for j in range(n) ]
-                       for i in range(n) ]
-
-        # Inner products are real numbers and not algebra
-        # elements, so once we turn the algebra element
-        # into a vector in inner_product(), we never go
-        # back. As a result -- contrary to what we do with
-        # self._multiplication_table -- we store the inner
-        # product table as a plain old matrix and not as
-        # an algebra operator.
-        ip_table = matrix.identity(field,n)
-        self._inner_product_matrix = ip_table
-
-        super(HadamardEJA, self).__init__(field,
-                                          mult_table,
-                                          check_axioms=False,
-                                          **kwargs)
+        if n == 0:
+            jordan_product = lambda x,y: x
+            inner_product = lambda x,y: x
+        else:
+            def jordan_product(x,y):
+                P = x.parent()
+                return P( xi*yi for (xi,yi) in zip(x,y) )
+
+            def inner_product(x,y):
+                return (x.T*y)[0,0]
+
+        # New defaults for keyword arguments. Don't orthonormalize
+        # because our basis is already orthonormal with respect to our
+        # inner-product. Don't check the axioms, because we know this
+        # is a valid EJA... but do double-check if the user passes
+        # check_axioms=True. Note: we DON'T override the "check_field"
+        # default here, because the user can pass in a field!
+        if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        column_basis = tuple( b.column()
+                              for b in FreeModule(field, n).basis() )
+        super().__init__(column_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         associative=True,
+                         **kwargs)
         self.rank.set_cache(n)
 
         if n == 0:
@@ -2190,16 +2670,15 @@ class HadamardEJA(RationalBasisEuclideanJordanAlgebra,
         return 5
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, **kwargs):
         """
         Return a random instance of this type of algebra.
         """
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
-        return cls(n, field, **kwargs)
+        return cls(n, **kwargs)
 
 
-class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
-                      ConcreteEuclideanJordanAlgebra):
+class BilinearFormEJA(ConcreteEJA):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the half-trace inner product and jordan product ``x*y =
@@ -2255,7 +2734,9 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
     We can check the multiplication condition given in the Jordan, von
     Neumann, and Wigner paper (and also discussed on my "On the
     symmetry..." paper). Note that this relies heavily on the standard
-    choice of basis, as does anything utilizing the bilinear form matrix::
+    choice of basis, as does anything utilizing the bilinear form
+    matrix.  We opt not to orthonormalize the basis, because if we
+    did, we would have to normalize the `s_{i}` in a similar manner::
 
         sage: set_random_seed()
         sage: n = ZZ.random_element(5)
@@ -2264,10 +2745,10 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
         sage: B22 = M.transpose()*M
         sage: B = block_matrix(2,2,[ [B11,0  ],
         ....:                        [0, B22 ] ])
-        sage: J = BilinearFormEJA(B)
+        sage: J = BilinearFormEJA(B, orthonormalize=False)
         sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
         sage: V = J.vector_space()
-        sage: sis = [ J.from_vector(V([0] + (M.inverse()*ei).list()))
+        sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
         ....:         for ei in eis ]
         sage: actual = [ sis[i]*sis[j]
         ....:            for i in range(n-1)
@@ -2277,42 +2758,50 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
         ....:              for j in range(n-1) ]
         sage: actual == expected
         True
+
     """
     def __init__(self, B, field=AA, **kwargs):
+        # The matrix "B" is supplied by the user in most cases,
+        # so it makes sense to check whether or not its positive-
+        # definite unless we are specifically asked not to...
+        if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
+            if not B.is_positive_definite():
+                raise ValueError("bilinear form is not positive-definite")
+
+        # However, all of the other data for this EJA is computed
+        # by us in manner that guarantees the axioms are
+        # satisfied. So, again, unless we are specifically asked to
+        # verify things, we'll skip the rest of the checks.
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        def inner_product(x,y):
+            return (y.T*B*x)[0,0]
+
+        def jordan_product(x,y):
+            P = x.parent()
+            x0 = x[0,0]
+            xbar = x[1:,0]
+            y0 = y[0,0]
+            ybar = y[1:,0]
+            z0 = inner_product(y,x)
+            zbar = y0*xbar + x0*ybar
+            return P([z0] + zbar.list())
+
         n = B.nrows()
+        column_basis = tuple( b.column()
+                              for b in FreeModule(field, n).basis() )
 
-        if not B.is_positive_definite():
-            raise ValueError("bilinear form is not positive-definite")
+        # TODO: I haven't actually checked this, but it seems legit.
+        associative = False
+        if n <= 2:
+            associative = True
 
-        V = VectorSpace(field, n)
-        mult_table = [[V.zero() for j in range(n)] for i in range(n)]
-        for i in range(n):
-            for j in range(n):
-                x = V.gen(i)
-                y = V.gen(j)
-                x0 = x[0]
-                xbar = x[1:]
-                y0 = y[0]
-                ybar = y[1:]
-                z0 = (B*x).inner_product(y)
-                zbar = y0*xbar + x0*ybar
-                z = V([z0] + zbar.list())
-                mult_table[i][j] = z
-
-        # Inner products are real numbers and not algebra
-        # elements, so once we turn the algebra element
-        # into a vector in inner_product(), we never go
-        # back. As a result -- contrary to what we do with
-        # self._multiplication_table -- we store the inner
-        # product table as a plain old matrix and not as
-        # an algebra operator.
-        ip_table = B
-        self._inner_product_matrix = ip_table
-
-        super(BilinearFormEJA, self).__init__(field,
-                                              mult_table,
-                                              check_axioms=False,
-                                              **kwargs)
+        super().__init__(column_basis,
+                         jordan_product,
+                         inner_product,
+                         field=field,
+                         associative=associative,
+                         **kwargs)
 
         # The rank of this algebra is two, unless we're in a
         # one-dimensional ambient space (because the rank is bounded
@@ -2332,28 +2821,28 @@ class BilinearFormEJA(RationalBasisEuclideanJordanAlgebra,
         return 5
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, **kwargs):
         """
         Return a random instance of this algebra.
         """
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         if n.is_zero():
-            B = matrix.identity(field, n)
-            return cls(B, field, **kwargs)
+            B = matrix.identity(ZZ, n)
+            return cls(B, **kwargs)
 
-        B11 = matrix.identity(field,1)
-        M = matrix.random(field, n-1)
-        I = matrix.identity(field, n-1)
-        alpha = field.zero()
+        B11 = matrix.identity(ZZ, 1)
+        M = matrix.random(ZZ, n-1)
+        I = matrix.identity(ZZ, n-1)
+        alpha = ZZ.zero()
         while alpha.is_zero():
-            alpha = field.random_element().abs()
+            alpha = ZZ.random_element().abs()
         B22 = M.transpose()*M + alpha*I
 
         from sage.matrix.special import block_matrix
         B = block_matrix(2,2, [ [B11,   ZZ(0) ],
                                 [ZZ(0), B22 ] ])
 
-        return cls(B, field, **kwargs)
+        return cls(B, **kwargs)
 
 
 class JordanSpinEJA(BilinearFormEJA):
@@ -2372,20 +2861,20 @@ class JordanSpinEJA(BilinearFormEJA):
     This multiplication table can be verified by hand::
 
         sage: J = JordanSpinEJA(4)
-        sage: e0,e1,e2,e3 = J.gens()
-        sage: e0*e0
-        e0
-        sage: e0*e1
-        e1
-        sage: e0*e2
-        e2
-        sage: e0*e3
-        e3
-        sage: e1*e2
+        sage: b0,b1,b2,b3 = J.gens()
+        sage: b0*b0
+        b0
+        sage: b0*b1
+        b1
+        sage: b0*b2
+        b2
+        sage: b0*b3
+        b3
+        sage: b1*b2
         0
-        sage: e1*e3
+        sage: b1*b3
         0
-        sage: e2*e3
+        sage: b2*b3
         0
 
     We can change the generator prefix::
@@ -2406,11 +2895,18 @@ class JordanSpinEJA(BilinearFormEJA):
             True
 
     """
-    def __init__(self, n, field=AA, **kwargs):
-        # This is a special case of the BilinearFormEJA with the identity
-        # matrix as its bilinear form.
-        B = matrix.identity(field, n)
-        super(JordanSpinEJA, self).__init__(B, field, **kwargs)
+    def __init__(self, n, *args, **kwargs):
+        # This is a special case of the BilinearFormEJA with the
+        # identity matrix as its bilinear form.
+        B = matrix.identity(ZZ, n)
+
+        # Don't orthonormalize because our basis is already
+        # orthonormal with respect to our inner-product.
+        if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
+
+        # But also don't pass check_field=False here, because the user
+        # can pass in a field!
+        super().__init__(B, *args, **kwargs)
 
     @staticmethod
     def _max_random_instance_size():
@@ -2420,18 +2916,17 @@ class JordanSpinEJA(BilinearFormEJA):
         return 5
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, **kwargs):
         """
         Return a random instance of this type of algebra.
 
         Needed here to override the implementation for ``BilinearFormEJA``.
         """
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
-        return cls(n, field, **kwargs)
+        return cls(n, **kwargs)
 
 
-class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra,
-                 ConcreteEuclideanJordanAlgebra):
+class TrivialEJA(ConcreteEJA):
     """
     The trivial Euclidean Jordan algebra consisting of only a zero element.
 
@@ -2460,168 +2955,413 @@ class TrivialEJA(FiniteDimensionalEuclideanJordanAlgebra,
         0
 
     """
-    def __init__(self, field=AA, **kwargs):
-        mult_table = []
-        self._inner_product_matrix = matrix(field,0)
-        super(TrivialEJA, self).__init__(field,
-                                         mult_table,
-                                         check_axioms=False,
-                                         **kwargs)
+    def __init__(self, **kwargs):
+        jordan_product = lambda x,y: x
+        inner_product = lambda x,y: 0
+        basis = ()
+
+        # New defaults for keyword arguments
+        if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
+        if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
+
+        super().__init__(basis,
+                         jordan_product,
+                         inner_product,
+                         associative=True,
+                         **kwargs)
+
         # The rank is zero using my definition, namely the dimension of the
         # largest subalgebra generated by any element.
         self.rank.set_cache(0)
         self.one.set_cache( self.zero() )
 
     @classmethod
-    def random_instance(cls, field=AA, **kwargs):
+    def random_instance(cls, **kwargs):
         # We don't take a "size" argument so the superclass method is
         # inappropriate for us.
-        return cls(field, **kwargs)
+        return cls(**kwargs)
 
-class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
+
+class CartesianProductEJA(FiniteDimensionalEJA):
     r"""
-    The external (orthogonal) direct sum of two other Euclidean Jordan
-    algebras. Essentially the Cartesian product of its two factors.
-    Every Euclidean Jordan algebra decomposes into an orthogonal
-    direct sum of simple Euclidean Jordan algebras, so no generality
-    is lost by providing only this construction.
+    The external (orthogonal) direct sum of two or more Euclidean
+    Jordan algebras. Every Euclidean Jordan algebra decomposes into an
+    orthogonal direct sum of simple Euclidean Jordan algebras which is
+    then isometric to a Cartesian product, so no generality is lost by
+    providing only this construction.
 
     SETUP::
 
         sage: from mjo.eja.eja_algebra import (random_eja,
+        ....:                                  CartesianProductEJA,
         ....:                                  HadamardEJA,
-        ....:                                  RealSymmetricEJA,
-        ....:                                  DirectSumEJA)
+        ....:                                  JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
 
-    EXAMPLES::
+    EXAMPLES:
+
+    The Jordan product is inherited from our factors and implemented by
+    our CombinatorialFreeModule Cartesian product superclass::
 
+        sage: set_random_seed()
         sage: J1 = HadamardEJA(2)
-        sage: J2 = RealSymmetricEJA(3)
-        sage: J = DirectSumEJA(J1,J2)
-        sage: J.dimension()
-        8
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: x,y = J.random_elements(2)
+        sage: x*y in J
+        True
+
+    The ability to retrieve the original factors is implemented by our
+    CombinatorialFreeModule Cartesian product superclass::
+
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = JordanSpinEJA(3, field=QQ)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.cartesian_factors()
+        (Euclidean Jordan algebra of dimension 2 over Rational Field,
+         Euclidean Jordan algebra of dimension 3 over Rational Field)
+
+    You can provide more than two factors::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J2 = JordanSpinEJA(3)
+        sage: J3 = RealSymmetricEJA(3)
+        sage: cartesian_product([J1,J2,J3])
+        Euclidean Jordan algebra of dimension 2 over Algebraic Real
+        Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
+        Real Field (+) Euclidean Jordan algebra of dimension 6 over
+        Algebraic Real Field
+
+    Rank is additive on a Cartesian product::
+
+        sage: J1 = HadamardEJA(1)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
         sage: J.rank()
-        5
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
+    The same rank computation works over the rationals, with whatever
+    basis you like::
+
+        sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
+        sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
+        sage: J = cartesian_product([J1,J2])
+        sage: J1.rank.clear_cache()
+        sage: J2.rank.clear_cache()
+        sage: J.rank.clear_cache()
+        sage: J.rank()
+        3
+        sage: J.rank() == J1.rank() + J2.rank()
+        True
+
+    The product algebra will be associative if and only if all of its
+    components are associative::
+
+        sage: J1 = HadamardEJA(2)
+        sage: J1.is_associative()
+        True
+        sage: J2 = HadamardEJA(3)
+        sage: J2.is_associative()
+        True
+        sage: J3 = RealSymmetricEJA(3)
+        sage: J3.is_associative()
+        False
+        sage: CP1 = cartesian_product([J1,J2])
+        sage: CP1.is_associative()
+        True
+        sage: CP2 = cartesian_product([J1,J3])
+        sage: CP2.is_associative()
+        False
+
+    Cartesian products of Cartesian products work::
+
+        sage: J1 = JordanSpinEJA(1)
+        sage: J2 = JordanSpinEJA(1)
+        sage: J3 = JordanSpinEJA(1)
+        sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
+        sage: J.multiplication_table()
+        +----++----+----+----+
+        | *  || b0 | b1 | b2 |
+        +====++====+====+====+
+        | b0 || b0 | 0  | 0  |
+        +----++----+----+----+
+        | b1 || 0  | b1 | 0  |
+        +----++----+----+----+
+        | b2 || 0  | 0  | b2 |
+        +----++----+----+----+
+        sage: HadamardEJA(3).multiplication_table()
+        +----++----+----+----+
+        | *  || b0 | b1 | b2 |
+        +====++====+====+====+
+        | b0 || b0 | 0  | 0  |
+        +----++----+----+----+
+        | b1 || 0  | b1 | 0  |
+        +----++----+----+----+
+        | b2 || 0  | 0  | b2 |
+        +----++----+----+----+
 
     TESTS:
 
-    The external direct sum construction is only valid when the two factors
-    have the same base ring; an error is raised otherwise::
+    All factors must share the same base field::
 
-        sage: set_random_seed()
-        sage: J1 = random_eja(AA)
-        sage: J2 = random_eja(QQ)
-        sage: J = DirectSumEJA(J1,J2)
+        sage: J1 = HadamardEJA(2, field=QQ)
+        sage: J2 = RealSymmetricEJA(2)
+        sage: CartesianProductEJA((J1,J2))
         Traceback (most recent call last):
         ...
-        ValueError: algebras must share the same base field
+        ValueError: all factors must share the same base field
+
+    The cached unit element is the same one that would be computed::
+
+        sage: set_random_seed()              # long time
+        sage: J1 = random_eja()              # long time
+        sage: J2 = random_eja()              # long time
+        sage: J = cartesian_product([J1,J2]) # long time
+        sage: actual = J.one()               # long time
+        sage: J.one.clear_cache()            # long time
+        sage: expected = J.one()             # long time
+        sage: actual == expected             # long time
+        True
 
     """
-    def __init__(self, J1, J2, **kwargs):
-        if J1.base_ring() != J2.base_ring():
-            raise ValueError("algebras must share the same base field")
-        field = J1.base_ring()
-
-        self._factors = (J1, J2)
-        n1 = J1.dimension()
-        n2 = J2.dimension()
-        n = n1+n2
-        V = VectorSpace(field, n)
-        mult_table = [ [ V.zero() for j in range(n) ]
-                       for i in range(n) ]
-        for i in range(n1):
-            for j in range(n1):
-                p = (J1.monomial(i)*J1.monomial(j)).to_vector()
-                mult_table[i][j] = V(p.list() + [field.zero()]*n2)
-
-        for i in range(n2):
-            for j in range(n2):
-                p = (J2.monomial(i)*J2.monomial(j)).to_vector()
-                mult_table[n1+i][n1+j] = V([field.zero()]*n1 + p.list())
-
-        super(DirectSumEJA, self).__init__(field,
-                                           mult_table,
-                                           check_axioms=False,
-                                           **kwargs)
-        self.rank.set_cache(J1.rank() + J2.rank())
-
-
-    def factors(self):
+    Element = FiniteDimensionalEJAElement
+
+
+    def __init__(self, factors, **kwargs):
+        m = len(factors)
+        if m == 0:
+            return TrivialEJA()
+
+        self._sets = factors
+
+        field = factors[0].base_ring()
+        if not all( J.base_ring() == field for J in factors ):
+            raise ValueError("all factors must share the same base field")
+
+        associative = all( f.is_associative() for f in factors )
+
+        MS = self.matrix_space()
+        basis = []
+        zero = MS.zero()
+        for i in range(m):
+            for b in factors[i].matrix_basis():
+                z = list(zero)
+                z[i] = b
+                basis.append(z)
+
+        basis = tuple( MS(b) for b in basis )
+
+        # Define jordan/inner products that operate on that matrix_basis.
+        def jordan_product(x,y):
+            return MS(tuple(
+                (factors[i](x[i])*factors[i](y[i])).to_matrix()
+                for i in range(m)
+            ))
+
+        def inner_product(x, y):
+            return sum(
+                factors[i](x[i]).inner_product(factors[i](y[i]))
+                for i in range(m)
+            )
+
+        # There's no need to check the field since it already came
+        # from an EJA. Likewise the axioms are guaranteed to be
+        # satisfied, unless the guy writing this class sucks.
+        #
+        # If you want the basis to be orthonormalized, orthonormalize
+        # the factors.
+        FiniteDimensionalEJA.__init__(self,
+                                      basis,
+                                      jordan_product,
+                                      inner_product,
+                                      field=field,
+                                      orthonormalize=False,
+                                      associative=associative,
+                                      cartesian_product=True,
+                                      check_field=False,
+                                      check_axioms=False)
+
+        ones = tuple(J.one().to_matrix() for J in factors)
+        self.one.set_cache(self(ones))
+        self.rank.set_cache(sum(J.rank() for J in factors))
+
+    def cartesian_factors(self):
+        # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
+        return self._sets
+
+    def cartesian_factor(self, i):
         r"""
-        Return the pair of this algebra's factors.
+        Return the ``i``th factor of this algebra.
+        """
+        return self._sets[i]
+
+    def _repr_(self):
+        # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
+        from sage.categories.cartesian_product import cartesian_product
+        return cartesian_product.symbol.join("%s" % factor
+                                             for factor in self._sets)
+
+    def matrix_space(self):
+        r"""
+        Return the space that our matrix basis lives in as a Cartesian
+        product.
 
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  JordanSpinEJA,
-            ....:                                  DirectSumEJA)
+            ....:                                  RealSymmetricEJA)
 
         EXAMPLES::
 
-            sage: J1 = HadamardEJA(2,QQ)
-            sage: J2 = JordanSpinEJA(3,QQ)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: J.factors()
-            (Euclidean Jordan algebra of dimension 2 over Rational Field,
-             Euclidean Jordan algebra of dimension 3 over Rational Field)
+            sage: J1 = HadamardEJA(1)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.matrix_space()
+            The Cartesian product of (Full MatrixSpace of 1 by 1 dense
+            matrices over Algebraic Real Field, Full MatrixSpace of 2
+            by 2 dense matrices over Algebraic Real Field)
 
         """
-        return self._factors
+        from sage.categories.cartesian_product import cartesian_product
+        return cartesian_product( [J.matrix_space()
+                                   for J in self.cartesian_factors()] )
 
-    def projections(self):
+    @cached_method
+    def cartesian_projection(self, i):
         r"""
-        Return a pair of projections onto this algebra's factors.
-
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
-            ....:                                  ComplexHermitianEJA,
-            ....:                                  DirectSumEJA)
+            sage: from mjo.eja.eja_algebra import (random_eja,
+            ....:                                  JordanSpinEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA,
+            ....:                                  ComplexHermitianEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The projection morphisms are Euclidean Jordan algebra
+        operators::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_projection(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0 0 0 0]
+            [0 1 0 0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field
+            sage: J.cartesian_projection(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 1 0 0]
+            [0 0 0 1 0]
+            [0 0 0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
+            Real Field (+) Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
+            Real Field
+
+        The projections work the way you'd expect on the vector
+        representation of an element::
 
             sage: J1 = JordanSpinEJA(2)
             sage: J2 = ComplexHermitianEJA(2)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (pi_left, pi_right) = J.projections()
-            sage: J.one().to_vector()
-            (1, 0, 1, 0, 0, 1)
+            sage: J = cartesian_product([J1,J2])
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
             sage: pi_left(J.one()).to_vector()
             (1, 0)
             sage: pi_right(J.one()).to_vector()
             (1, 0, 0, 1)
+            sage: J.one().to_vector()
+            (1, 0, 1, 0, 0, 1)
+
+        TESTS:
+
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: P0 = J.cartesian_projection(0)
+            sage: P1 = J.cartesian_projection(0)
+            sage: P0 == P1
+            True
 
         """
-        (J1,J2) = self.factors()
-        m = J1.dimension()
-        n = J2.dimension()
-        V_basis = self.vector_space().basis()
-        # Need to specify the dimensions explicitly so that we don't
-        # wind up with a zero-by-zero matrix when we want e.g. a
-        # zero-by-two matrix (important for composing things).
-        P1 = matrix(self.base_ring(), m, m+n, V_basis[:m])
-        P2 = matrix(self.base_ring(), n, m+n, V_basis[m:])
-        pi_left = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J1,P1)
-        pi_right = FiniteDimensionalEuclideanJordanAlgebraOperator(self,J2,P2)
-        return (pi_left, pi_right)
-
-    def inclusions(self):
-        r"""
-        Return the pair of inclusion maps from our factors into us.
+        offset = sum( self.cartesian_factor(k).dimension()
+                      for k in range(i) )
+        Ji = self.cartesian_factor(i)
+        Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
+                                   codomain=Ji)
 
+        return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
+
+    @cached_method
+    def cartesian_embedding(self, i):
+        r"""
         SETUP::
 
             sage: from mjo.eja.eja_algebra import (random_eja,
             ....:                                  JordanSpinEJA,
-            ....:                                  RealSymmetricEJA,
-            ....:                                  DirectSumEJA)
+            ....:                                  HadamardEJA,
+            ....:                                  RealSymmetricEJA)
 
-        EXAMPLES::
+        EXAMPLES:
+
+        The embedding morphisms are Euclidean Jordan algebra
+        operators::
+
+            sage: J1 = HadamardEJA(2)
+            sage: J2 = RealSymmetricEJA(2)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.cartesian_embedding(0)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [1 0]
+            [0 1]
+            [0 0]
+            [0 0]
+            [0 0]
+            Domain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+            sage: J.cartesian_embedding(1)
+            Linear operator between finite-dimensional Euclidean Jordan
+            algebras represented by the matrix:
+            [0 0 0]
+            [0 0 0]
+            [1 0 0]
+            [0 1 0]
+            [0 0 1]
+            Domain: Euclidean Jordan algebra of dimension 3 over
+            Algebraic Real Field
+            Codomain: Euclidean Jordan algebra of dimension 2 over
+            Algebraic Real Field (+) Euclidean Jordan algebra of
+            dimension 3 over Algebraic Real Field
+
+        The embeddings work the way you'd expect on the vector
+        representation of an element::
 
             sage: J1 = JordanSpinEJA(3)
             sage: J2 = RealSymmetricEJA(2)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (iota_left, iota_right) = J.inclusions()
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
             sage: iota_left(J1.zero()) == J.zero()
             True
             sage: iota_right(J2.zero()) == J.zero()
@@ -2639,6 +3379,17 @@ class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
 
         TESTS:
 
+        The answer never changes::
+
+            sage: set_random_seed()
+            sage: J1 = random_eja()
+            sage: J2 = random_eja()
+            sage: J = cartesian_product([J1,J2])
+            sage: E0 = J.cartesian_embedding(0)
+            sage: E1 = J.cartesian_embedding(0)
+            sage: E0 == E1
+            True
+
         Composing a projection with the corresponding inclusion should
         produce the identity map, and mismatching them should produce
         the zero map::
@@ -2646,9 +3397,11 @@ class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
             sage: set_random_seed()
             sage: J1 = random_eja()
             sage: J2 = random_eja()
-            sage: J = DirectSumEJA(J1,J2)
-            sage: (iota_left, iota_right) = J.inclusions()
-            sage: (pi_left, pi_right) = J.projections()
+            sage: J = cartesian_product([J1,J2])
+            sage: iota_left = J.cartesian_embedding(0)
+            sage: iota_right = J.cartesian_embedding(1)
+            sage: pi_left = J.cartesian_projection(0)
+            sage: pi_right = J.cartesian_projection(1)
             sage: pi_left*iota_left == J1.one().operator()
             True
             sage: pi_right*iota_right == J2.one().operator()
@@ -2659,58 +3412,64 @@ class DirectSumEJA(FiniteDimensionalEuclideanJordanAlgebra):
             True
 
         """
-        (J1,J2) = self.factors()
-        m = J1.dimension()
-        n = J2.dimension()
-        V_basis = self.vector_space().basis()
-        # Need to specify the dimensions explicitly so that we don't
-        # wind up with a zero-by-zero matrix when we want e.g. a
-        # two-by-zero matrix (important for composing things).
-        I1 = matrix.column(self.base_ring(), m, m+n, V_basis[:m])
-        I2 = matrix.column(self.base_ring(), n, m+n, V_basis[m:])
-        iota_left = FiniteDimensionalEuclideanJordanAlgebraOperator(J1,self,I1)
-        iota_right = FiniteDimensionalEuclideanJordanAlgebraOperator(J2,self,I2)
-        return (iota_left, iota_right)
+        offset = sum( self.cartesian_factor(k).dimension()
+                      for k in range(i) )
+        Ji = self.cartesian_factor(i)
+        Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
+                                 codomain=self)
+        return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
 
-    def inner_product(self, x, y):
-        r"""
-        The standard Cartesian inner-product.
 
-        We project ``x`` and ``y`` onto our factors, and add up the
-        inner-products from the subalgebras.
 
-        SETUP::
+FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
 
+class RationalBasisCartesianProductEJA(CartesianProductEJA,
+                                       RationalBasisEJA):
+    r"""
+    A separate class for products of algebras for which we know a
+    rational basis.
 
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
-            ....:                                  QuaternionHermitianEJA,
-            ....:                                  DirectSumEJA)
-
-        EXAMPLE::
-
-            sage: J1 = HadamardEJA(3,QQ)
-            sage: J2 = QuaternionHermitianEJA(2,QQ,normalize_basis=False)
-            sage: J = DirectSumEJA(J1,J2)
-            sage: x1 = J1.one()
-            sage: x2 = x1
-            sage: y1 = J2.one()
-            sage: y2 = y1
-            sage: x1.inner_product(x2)
-            3
-            sage: y1.inner_product(y2)
-            2
-            sage: J.one().inner_product(J.one())
-            5
+    SETUP::
 
-        """
-        (pi_left, pi_right) = self.projections()
-        x1 = pi_left(x)
-        x2 = pi_right(x)
-        y1 = pi_left(y)
-        y2 = pi_right(y)
+        sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
+        ....:                                  RealSymmetricEJA)
+
+    EXAMPLES:
 
-        return (x1.inner_product(y1) + x2.inner_product(y2))
+    This gives us fast characteristic polynomial computations in
+    product algebras, too::
 
 
+        sage: J1 = JordanSpinEJA(2)
+        sage: J2 = RealSymmetricEJA(3)
+        sage: J = cartesian_product([J1,J2])
+        sage: J.characteristic_polynomial_of().degree()
+        5
+        sage: J.rank()
+        5
 
-random_eja = ConcreteEuclideanJordanAlgebra.random_instance
+    """
+    def __init__(self, algebras, **kwargs):
+        CartesianProductEJA.__init__(self, algebras, **kwargs)
+
+        self._rational_algebra = None
+        if self.vector_space().base_field() is not QQ:
+            self._rational_algebra = cartesian_product([
+                r._rational_algebra for r in algebras
+            ])
+
+
+RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
+
+def random_eja(*args, **kwargs):
+    J1 = ConcreteEJA.random_instance(*args, **kwargs)
+
+    # This might make Cartesian products appear roughly as often as
+    # any other ConcreteEJA.
+    if ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1) == 0:
+        # Use random_eja() again so we can get more than two factors.
+        J2 = random_eja(*args, **kwargs)
+        J = cartesian_product([J1,J2])
+        return J
+    else:
+        return J1