]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: add OctonionHermitianEJA to the docs.
[sage.d.git] / mjo / eja / eja_algebra.py
index abf2aa36879abf97905bb749783c158a9aba5600..43f8021706fdeaa20033043ae31d808b00bc007a 100644 (file)
@@ -32,22 +32,21 @@ for these simple algebras:
   * :class:`RealSymmetricEJA`
   * :class:`ComplexHermitianEJA`
   * :class:`QuaternionHermitianEJA`
+  * :class:`OctonionHermitianEJA`
 
-Missing from this list is the algebra of three-by-three octononion
-Hermitian matrices, as there is (as of yet) no implementation of the
-octonions in SageMath. In addition to these, we provide two other
-example constructions,
+In addition to these, we provide two other example constructions,
 
   * :class:`HadamardEJA`
   * :class:`TrivialEJA`
 
 The Jordan spin algebra is a bilinear form algebra where the bilinear
 form is the identity. The Hadamard EJA is simply a Cartesian product
-of one-dimensional spin algebras. And last but not least, the trivial
-EJA is exactly what you think. Cartesian products of these are also
-supported using the usual ``cartesian_product()`` function; as a
-result, we support (up to isomorphism) all Euclidean Jordan algebras
-that don't involve octonions.
+of one-dimensional spin algebras. And last but least, the trivial EJA
+is exactly what you think it is; it could also be obtained by
+constructing a dimension-zero instance of any of the other
+algebras. Cartesian products of these are also supported using the
+usual ``cartesian_product()`` function; as a result, we support (up to
+isomorphism) all Euclidean Jordan algebras.
 
 SETUP::
 
@@ -1656,7 +1655,7 @@ class RationalBasisEJA(FiniteDimensionalEJA):
         subs_dict = { X[i]: BX[i] for i in range(len(X)) }
         return tuple( a_i.subs(subs_dict) for a_i in a )
 
-class ConcreteEJA(RationalBasisEJA):
+class ConcreteEJA(FiniteDimensionalEJA):
     r"""
     A class for the Euclidean Jordan algebras that we know by name.
 
@@ -1831,7 +1830,7 @@ class RealEmbeddedMatrixEJA(MatrixEJA):
         # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
         return (X*Y).trace()/cls.dimension_over_reals()
 
-class RealSymmetricEJA(ConcreteEJA, MatrixEJA):
+class RealSymmetricEJA(ConcreteEJA, RationalBasisEJA, MatrixEJA):
     """
     The rank-n simple EJA consisting of real symmetric n-by-n
     matrices, the usual symmetric Jordan product, and the trace inner
@@ -2113,7 +2112,7 @@ class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
         return matrix(F, n/d, elements)
 
 
-class ComplexHermitianEJA(ConcreteEJA, ComplexMatrixEJA):
+class ComplexHermitianEJA(ConcreteEJA, RationalBasisEJA, ComplexMatrixEJA):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -2415,7 +2414,9 @@ class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
         return matrix(Q, n/d, elements)
 
 
-class QuaternionHermitianEJA(ConcreteEJA, QuaternionMatrixEJA):
+class QuaternionHermitianEJA(ConcreteEJA,
+                             RationalBasisEJA,
+                             QuaternionMatrixEJA):
     r"""
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -2753,7 +2754,7 @@ class OctonionHermitianEJA(FiniteDimensionalEJA, MatrixEJA):
         """
         return (X*Y).trace().real().coefficient(0)
 
-class HadamardEJA(ConcreteEJA):
+class HadamardEJA(ConcreteEJA, RationalBasisEJA):
     """
     Return the Euclidean Jordan Algebra corresponding to the set
     `R^n` under the Hadamard product.
@@ -2845,7 +2846,7 @@ class HadamardEJA(ConcreteEJA):
         return cls(n, **kwargs)
 
 
-class BilinearFormEJA(ConcreteEJA):
+class BilinearFormEJA(ConcreteEJA, RationalBasisEJA):
     r"""
     The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
     with the half-trace inner product and jordan product ``x*y =
@@ -3093,7 +3094,7 @@ class JordanSpinEJA(BilinearFormEJA):
         return cls(n, **kwargs)
 
 
-class TrivialEJA(ConcreteEJA):
+class TrivialEJA(ConcreteEJA, RationalBasisEJA):
     """
     The trivial Euclidean Jordan algebra consisting of only a zero element.
 
@@ -3378,9 +3379,17 @@ class CartesianProductEJA(FiniteDimensionalEJA):
         Return the space that our matrix basis lives in as a Cartesian
         product.
 
+        We don't simply use the ``cartesian_product()`` functor here
+        because it acts differently on SageMath MatrixSpaces and our
+        custom MatrixAlgebras, which are CombinatorialFreeModules. We
+        always want the result to be represented (and indexed) as
+        an ordered tuple.
+
         SETUP::
 
-            sage: from mjo.eja.eja_algebra import (HadamardEJA,
+            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
+            ....:                                  HadamardEJA,
+            ....:                                  OctonionHermitianEJA,
             ....:                                  RealSymmetricEJA)
 
         EXAMPLES::
@@ -3393,10 +3402,44 @@ class CartesianProductEJA(FiniteDimensionalEJA):
             matrices over Algebraic Real Field, Full MatrixSpace of 2
             by 2 dense matrices over Algebraic Real Field)
 
+        ::
+
+            sage: J1 = ComplexHermitianEJA(1)
+            sage: J2 = ComplexHermitianEJA(1)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.one().to_matrix()[0]
+            [1 0]
+            [0 1]
+            sage: J.one().to_matrix()[1]
+            [1 0]
+            [0 1]
+
+        ::
+
+            sage: J1 = OctonionHermitianEJA(1)
+            sage: J2 = OctonionHermitianEJA(1)
+            sage: J = cartesian_product([J1,J2])
+            sage: J.one().to_matrix()[0]
+            +----+
+            | e0 |
+            +----+
+            sage: J.one().to_matrix()[1]
+            +----+
+            | e0 |
+            +----+
+
         """
-        from sage.categories.cartesian_product import cartesian_product
-        return cartesian_product( [J.matrix_space()
-                                   for J in self.cartesian_factors()] )
+        scalars = self.cartesian_factor(0).base_ring()
+
+        # This category isn't perfect, but is good enough for what we
+        # need to do.
+        cat = MagmaticAlgebras(scalars).FiniteDimensional().WithBasis()
+        cat = cat.Unital().CartesianProducts()
+        factors = tuple( J.matrix_space() for J in self.cartesian_factors() )
+
+        from sage.sets.cartesian_product import CartesianProduct
+        return CartesianProduct(factors, cat)
+
 
     @cached_method
     def cartesian_projection(self, i):