]> gitweb.michael.orlitzky.com - sage.d.git/blobdiff - mjo/eja/eja_algebra.py
eja: eliminate remaining real-embeddings.
[sage.d.git] / mjo / eja / eja_algebra.py
index 6b5b090fbefc4a51bfbedaf5a64d997ec7cfad64..3027075374a177ba5f72bbd690a2c07dad02d136 100644 (file)
@@ -1019,7 +1019,9 @@ class FiniteDimensionalEJA(CombinatorialFreeModule):
             Full MatrixSpace of 4 by 4 dense matrices over Rational Field
             sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
             sage: J.matrix_space()
-            Full MatrixSpace of 4 by 4 dense matrices over Rational Field
+            Module of 1 by 1 matrices with entries in Quaternion
+            Algebra (-1, -1) with base ring Rational Field over
+            the scalar ring Rational Field
 
         """
         if self.is_trivial():
@@ -1742,99 +1744,6 @@ class MatrixEJA:
         """
         return (X*Y).trace().real()
 
-class RealEmbeddedMatrixEJA(MatrixEJA):
-    @staticmethod
-    def dimension_over_reals():
-        r"""
-        The dimension of this matrix's base ring over the reals.
-
-        The reals are dimension one over themselves, obviously; that's
-        just `\mathbb{R}^{1}`. Likewise, the complex numbers `a + bi`
-        have dimension two. Finally, the quaternions have dimension
-        four over the reals.
-
-        This is used to determine the size of the matrix returned from
-        :meth:`real_embed`, among other things.
-        """
-        raise NotImplementedError
-
-    @classmethod
-    def real_embed(cls,M):
-        """
-        Embed the matrix ``M`` into a space of real matrices.
-
-        The matrix ``M`` can have entries in any field at the moment:
-        the real numbers, complex numbers, or quaternions. And although
-        they are not a field, we can probably support octonions at some
-        point, too. This function returns a real matrix that "acts like"
-        the original with respect to matrix multiplication; i.e.
-
-          real_embed(M*N) = real_embed(M)*real_embed(N)
-
-        """
-        if M.ncols() != M.nrows():
-            raise ValueError("the matrix 'M' must be square")
-        return M
-
-
-    @classmethod
-    def real_unembed(cls,M):
-        """
-        The inverse of :meth:`real_embed`.
-        """
-        if M.ncols() != M.nrows():
-            raise ValueError("the matrix 'M' must be square")
-        if not ZZ(M.nrows()).mod(cls.dimension_over_reals()).is_zero():
-            raise ValueError("the matrix 'M' must be a real embedding")
-        return M
-
-
-    @classmethod
-    def trace_inner_product(cls,X,Y):
-        r"""
-        Compute the trace inner-product of two real-embeddings.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
-            ....:                                  QuaternionHermitianEJA)
-
-        EXAMPLES::
-
-            sage: set_random_seed()
-            sage: J = ComplexHermitianEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = J.real_unembed(Xe)
-            sage: Y = J.real_unembed(Ye)
-            sage: expected = (X*Y).trace().real()
-            sage: actual = J.trace_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
-
-        ::
-
-            sage: set_random_seed()
-            sage: J = QuaternionHermitianEJA.random_instance()
-            sage: x,y = J.random_elements(2)
-            sage: Xe = x.to_matrix()
-            sage: Ye = y.to_matrix()
-            sage: X = J.real_unembed(Xe)
-            sage: Y = J.real_unembed(Ye)
-            sage: expected = (X*Y).trace().coefficient_tuple()[0]
-            sage: actual = J.trace_inner_product(Xe,Ye)
-            sage: actual == expected
-            True
-
-        """
-        # This does in fact compute the real part of the trace.
-        # If we compute the trace of e.g. a complex matrix M,
-        # then we do so by adding up its diagonal entries --
-        # call them z_1 through z_n. The real embedding of z_1
-        # will be a 2-by-2 REAL matrix [a, b; -b, a] whose trace
-        # as a REAL matrix will be 2*a = 2*Re(z_1). And so forth.
-        return (X*Y).trace()/cls.dimension_over_reals()
 
 class RealSymmetricEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
     """
@@ -1970,155 +1879,7 @@ class RealSymmetricEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
 
 
 
-class ComplexMatrixEJA(RealEmbeddedMatrixEJA):
-    # A manual dictionary-cache for the complex_extension() method,
-    # since apparently @classmethods can't also be @cached_methods.
-    _complex_extension = {}
-
-    @classmethod
-    def complex_extension(cls,field):
-        r"""
-        The complex field that we embed/unembed, as an extension
-        of the given ``field``.
-        """
-        if field in cls._complex_extension:
-            return cls._complex_extension[field]
-
-        # Sage doesn't know how to adjoin the complex "i" (the root of
-        # x^2 + 1) to a field in a general way. Here, we just enumerate
-        # all of the cases that I have cared to support so far.
-        if field is AA:
-            # Sage doesn't know how to embed AA into QQbar, i.e. how
-            # to adjoin sqrt(-1) to AA.
-            F = QQbar
-        elif not field.is_exact():
-            # RDF or RR
-            F = field.complex_field()
-        else:
-            # Works for QQ and... maybe some other fields.
-            R = PolynomialRing(field, 'z')
-            z = R.gen()
-            F = field.extension(z**2 + 1, 'I', embedding=CLF(-1).sqrt())
-
-        cls._complex_extension[field] = F
-        return F
-
-    @staticmethod
-    def dimension_over_reals():
-        return 2
-
-    @classmethod
-    def real_embed(cls,M):
-        """
-        Embed the n-by-n complex matrix ``M`` into the space of real
-        matrices of size 2n-by-2n via the map the sends each entry `z = a +
-        bi` to the block matrix ``[[a,b],[-b,a]]``.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
-
-        EXAMPLES::
-
-            sage: F = QuadraticField(-1, 'I')
-            sage: x1 = F(4 - 2*i)
-            sage: x2 = F(1 + 2*i)
-            sage: x3 = F(-i)
-            sage: x4 = F(6)
-            sage: M = matrix(F,2,[[x1,x2],[x3,x4]])
-            sage: ComplexMatrixEJA.real_embed(M)
-            [ 4 -2| 1  2]
-            [ 2  4|-2  1]
-            [-----+-----]
-            [ 0 -1| 6  0]
-            [ 1  0| 0  6]
-
-        TESTS:
-
-        Embedding is a homomorphism (isomorphism, in fact)::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(3)
-            sage: F = QuadraticField(-1, 'I')
-            sage: X = random_matrix(F, n)
-            sage: Y = random_matrix(F, n)
-            sage: Xe = ComplexMatrixEJA.real_embed(X)
-            sage: Ye = ComplexMatrixEJA.real_embed(Y)
-            sage: XYe = ComplexMatrixEJA.real_embed(X*Y)
-            sage: Xe*Ye == XYe
-            True
-
-        """
-        super().real_embed(M)
-        n = M.nrows()
-
-        # We don't need any adjoined elements...
-        field = M.base_ring().base_ring()
-
-        blocks = []
-        for z in M.list():
-            a = z.real()
-            b = z.imag()
-            blocks.append(matrix(field, 2, [ [ a, b],
-                                             [-b, a] ]))
-
-        return matrix.block(field, n, blocks)
-
-
-    @classmethod
-    def real_unembed(cls,M):
-        """
-        The inverse of _embed_complex_matrix().
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import ComplexMatrixEJA
-
-        EXAMPLES::
-
-            sage: A = matrix(QQ,[ [ 1,  2,   3,  4],
-            ....:                 [-2,  1,  -4,  3],
-            ....:                 [ 9,  10, 11, 12],
-            ....:                 [-10, 9, -12, 11] ])
-            sage: ComplexMatrixEJA.real_unembed(A)
-            [  2*I + 1   4*I + 3]
-            [ 10*I + 9 12*I + 11]
-
-        TESTS:
-
-        Unembedding is the inverse of embedding::
-
-            sage: set_random_seed()
-            sage: F = QuadraticField(-1, 'I')
-            sage: M = random_matrix(F, 3)
-            sage: Me = ComplexMatrixEJA.real_embed(M)
-            sage: ComplexMatrixEJA.real_unembed(Me) == M
-            True
-
-        """
-        super().real_unembed(M)
-        n = ZZ(M.nrows())
-        d = cls.dimension_over_reals()
-        F = cls.complex_extension(M.base_ring())
-        i = F.gen()
-
-        # Go top-left to bottom-right (reading order), converting every
-        # 2-by-2 block we see to a single complex element.
-        elements = []
-        for k in range(n/d):
-            for j in range(n/d):
-                submat = M[d*k:d*k+d,d*j:d*j+d]
-                if submat[0,0] != submat[1,1]:
-                    raise ValueError('bad on-diagonal submatrix')
-                if submat[0,1] != -submat[1,0]:
-                    raise ValueError('bad off-diagonal submatrix')
-                z = submat[0,0] + submat[0,1]*i
-                elements.append(z)
-
-        return matrix(F, n/d, elements)
-
-
-class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, ComplexMatrixEJA):
+class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
     """
     The rank-n simple EJA consisting of complex Hermitian n-by-n
     matrices over the real numbers, the usual symmetric Jordan product,
@@ -2195,48 +1956,51 @@ class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, ComplexMatrixEJA):
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: B = ComplexHermitianEJA._denormalized_basis(n,ZZ)
-            sage: all( M.is_symmetric() for M in  B)
+            sage: B = ComplexHermitianEJA._denormalized_basis(n,QQ)
+            sage: all( M.is_hermitian() for M in  B)
             True
 
         """
-        R = PolynomialRing(ZZ, 'z')
-        z = R.gen()
-        F = ZZ.extension(z**2 + 1, 'I')
-        I = F.gen(1)
+        from mjo.hurwitz import ComplexMatrixAlgebra
+        A = ComplexMatrixAlgebra(n, scalars=field)
+        es = A.entry_algebra_gens()
 
-        # This is like the symmetric case, but we need to be careful:
-        #
-        #   * We want conjugate-symmetry, not just symmetry.
-        #   * The diagonal will (as a result) be real.
-        #
-        S = []
-        Eij = matrix.zero(F,n)
+        basis = []
         for i in range(n):
             for j in range(i+1):
-                # "build" E_ij
-                Eij[i,j] = 1
                 if i == j:
-                    Sij = cls.real_embed(Eij)
-                    S.append(Sij)
+                    E_ii = A.monomial( (i,j,es[0]) )
+                    basis.append(E_ii)
                 else:
-                    # The second one has a minus because it's conjugated.
-                    Eij[j,i] = 1 # Eij = Eij + Eij.transpose()
-                    Sij_real = cls.real_embed(Eij)
-                    S.append(Sij_real)
-                    # Eij = I*Eij - I*Eij.transpose()
-                    Eij[i,j] = I
-                    Eij[j,i] = -I
-                    Sij_imag = cls.real_embed(Eij)
-                    S.append(Sij_imag)
-                    Eij[j,i] = 0
-                # "erase" E_ij
-                Eij[i,j] = 0
-
-        # Since we embedded the entries, we can drop back to the
-        # desired real "field" instead of the extension "F".
-        return tuple( s.change_ring(field) for s in S )
+                    for e in es:
+                        E_ij  = A.monomial( (i,j,e)             )
+                        ec = e.conjugate()
+                        # If the conjugate has a negative sign in front
+                        # of it, (j,i,ec) won't be a monomial!
+                        if (j,i,ec) in A.indices():
+                            E_ij += A.monomial( (j,i,ec) )
+                        else:
+                            E_ij -= A.monomial( (j,i,-ec) )
+                        basis.append(E_ij)
 
+        return tuple( basis )
+
+    @staticmethod
+    def trace_inner_product(X,Y):
+        r"""
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
+
+        TESTS::
+
+            sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: I = J.one().to_matrix()
+            sage: J.trace_inner_product(I, -I)
+            -2
+
+        """
+        return (X*Y).trace().real()
 
     def __init__(self, n, field=AA, **kwargs):
         # We know this is a valid EJA, but will double-check
@@ -2257,7 +2021,7 @@ class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, ComplexMatrixEJA):
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
-        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        idV = self.matrix_space().one()
         self.one.set_cache(self(idV))
 
     @staticmethod
@@ -2272,157 +2036,8 @@ class ComplexHermitianEJA(RationalBasisEJA, ConcreteEJA, ComplexMatrixEJA):
         n = ZZ.random_element(cls._max_random_instance_size() + 1)
         return cls(n, **kwargs)
 
-class QuaternionMatrixEJA(RealEmbeddedMatrixEJA):
-
-    # A manual dictionary-cache for the quaternion_extension() method,
-    # since apparently @classmethods can't also be @cached_methods.
-    _quaternion_extension = {}
-
-    @classmethod
-    def quaternion_extension(cls,field):
-        r"""
-        The quaternion field that we embed/unembed, as an extension
-        of the given ``field``.
-        """
-        if field in cls._quaternion_extension:
-            return cls._quaternion_extension[field]
-
-        Q = QuaternionAlgebra(field,-1,-1)
-
-        cls._quaternion_extension[field] = Q
-        return Q
-
-    @staticmethod
-    def dimension_over_reals():
-        return 4
-
-    @classmethod
-    def real_embed(cls,M):
-        """
-        Embed the n-by-n quaternion matrix ``M`` into the space of real
-        matrices of size 4n-by-4n by first sending each quaternion entry `z
-        = a + bi + cj + dk` to the block-complex matrix ``[[a + bi,
-        c+di],[-c + di, a-bi]]`, and then embedding those into a real
-        matrix.
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
-
-        EXAMPLES::
-
-            sage: Q = QuaternionAlgebra(QQ,-1,-1)
-            sage: i,j,k = Q.gens()
-            sage: x = 1 + 2*i + 3*j + 4*k
-            sage: M = matrix(Q, 1, [[x]])
-            sage: QuaternionMatrixEJA.real_embed(M)
-            [ 1  2  3  4]
-            [-2  1 -4  3]
-            [-3  4  1 -2]
-            [-4 -3  2  1]
-
-        Embedding is a homomorphism (isomorphism, in fact)::
-
-            sage: set_random_seed()
-            sage: n = ZZ.random_element(2)
-            sage: Q = QuaternionAlgebra(QQ,-1,-1)
-            sage: X = random_matrix(Q, n)
-            sage: Y = random_matrix(Q, n)
-            sage: Xe = QuaternionMatrixEJA.real_embed(X)
-            sage: Ye = QuaternionMatrixEJA.real_embed(Y)
-            sage: XYe = QuaternionMatrixEJA.real_embed(X*Y)
-            sage: Xe*Ye == XYe
-            True
-
-        """
-        super().real_embed(M)
-        quaternions = M.base_ring()
-        n = M.nrows()
-
-        F = QuadraticField(-1, 'I')
-        i = F.gen()
-
-        blocks = []
-        for z in M.list():
-            t = z.coefficient_tuple()
-            a = t[0]
-            b = t[1]
-            c = t[2]
-            d = t[3]
-            cplxM = matrix(F, 2, [[ a + b*i, c + d*i],
-                                 [-c + d*i, a - b*i]])
-            realM = ComplexMatrixEJA.real_embed(cplxM)
-            blocks.append(realM)
-
-        # We should have real entries by now, so use the realest field
-        # we've got for the return value.
-        return matrix.block(quaternions.base_ring(), n, blocks)
 
-
-
-    @classmethod
-    def real_unembed(cls,M):
-        """
-        The inverse of _embed_quaternion_matrix().
-
-        SETUP::
-
-            sage: from mjo.eja.eja_algebra import QuaternionMatrixEJA
-
-        EXAMPLES::
-
-            sage: M = matrix(QQ, [[ 1,  2,  3,  4],
-            ....:                 [-2,  1, -4,  3],
-            ....:                 [-3,  4,  1, -2],
-            ....:                 [-4, -3,  2,  1]])
-            sage: QuaternionMatrixEJA.real_unembed(M)
-            [1 + 2*i + 3*j + 4*k]
-
-        TESTS:
-
-        Unembedding is the inverse of embedding::
-
-            sage: set_random_seed()
-            sage: Q = QuaternionAlgebra(QQ, -1, -1)
-            sage: M = random_matrix(Q, 3)
-            sage: Me = QuaternionMatrixEJA.real_embed(M)
-            sage: QuaternionMatrixEJA.real_unembed(Me) == M
-            True
-
-        """
-        super().real_unembed(M)
-        n = ZZ(M.nrows())
-        d = cls.dimension_over_reals()
-
-        # Use the base ring of the matrix to ensure that its entries can be
-        # multiplied by elements of the quaternion algebra.
-        Q = cls.quaternion_extension(M.base_ring())
-        i,j,k = Q.gens()
-
-        # Go top-left to bottom-right (reading order), converting every
-        # 4-by-4 block we see to a 2-by-2 complex block, to a 1-by-1
-        # quaternion block.
-        elements = []
-        for l in range(n/d):
-            for m in range(n/d):
-                submat = ComplexMatrixEJA.real_unembed(
-                    M[d*l:d*l+d,d*m:d*m+d] )
-                if submat[0,0] != submat[1,1].conjugate():
-                    raise ValueError('bad on-diagonal submatrix')
-                if submat[0,1] != -submat[1,0].conjugate():
-                    raise ValueError('bad off-diagonal submatrix')
-                z  = submat[0,0].real()
-                z += submat[0,0].imag()*i
-                z += submat[0,1].real()*j
-                z += submat[0,1].imag()*k
-                elements.append(z)
-
-        return matrix(Q, n/d, elements)
-
-
-class QuaternionHermitianEJA(RationalBasisEJA,
-                             ConcreteEJA,
-                             QuaternionMatrixEJA):
+class QuaternionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
     r"""
     The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
     matrices, the usual symmetric Jordan product, and the
@@ -2498,59 +2113,56 @@ class QuaternionHermitianEJA(RationalBasisEJA,
 
             sage: set_random_seed()
             sage: n = ZZ.random_element(1,5)
-            sage: B = QuaternionHermitianEJA._denormalized_basis(n,ZZ)
-            sage: all( M.is_symmetric() for M in B )
+            sage: B = QuaternionHermitianEJA._denormalized_basis(n,QQ)
+            sage: all( M.is_hermitian() for M in B )
             True
 
         """
-        Q = QuaternionAlgebra(QQ,-1,-1)
-        I,J,K = Q.gens()
+        from mjo.hurwitz import QuaternionMatrixAlgebra
+        A = QuaternionMatrixAlgebra(n, scalars=field)
+        es = A.entry_algebra_gens()
 
-        # This is like the symmetric case, but we need to be careful:
-        #
-        #   * We want conjugate-symmetry, not just symmetry.
-        #   * The diagonal will (as a result) be real.
-        #
-        S = []
-        Eij = matrix.zero(Q,n)
+        basis = []
         for i in range(n):
             for j in range(i+1):
-                # "build" E_ij
-                Eij[i,j] = 1
                 if i == j:
-                    Sij = cls.real_embed(Eij)
-                    S.append(Sij)
+                    E_ii = A.monomial( (i,j,es[0]) )
+                    basis.append(E_ii)
                 else:
-                    # The second, third, and fourth ones have a minus
-                    # because they're conjugated.
-                    # Eij = Eij + Eij.transpose()
-                    Eij[j,i] = 1
-                    Sij_real = cls.real_embed(Eij)
-                    S.append(Sij_real)
-                    # Eij = I*(Eij - Eij.transpose())
-                    Eij[i,j] = I
-                    Eij[j,i] = -I
-                    Sij_I = cls.real_embed(Eij)
-                    S.append(Sij_I)
-                    # Eij = J*(Eij - Eij.transpose())
-                    Eij[i,j] = J
-                    Eij[j,i] = -J
-                    Sij_J = cls.real_embed(Eij)
-                    S.append(Sij_J)
-                    # Eij = K*(Eij - Eij.transpose())
-                    Eij[i,j] = K
-                    Eij[j,i] = -K
-                    Sij_K = cls.real_embed(Eij)
-                    S.append(Sij_K)
-                    Eij[j,i] = 0
-                # "erase" E_ij
-                Eij[i,j] = 0
-
-        # Since we embedded the entries, we can drop back to the
-        # desired real "field" instead of the quaternion algebra "Q".
-        return tuple( s.change_ring(field) for s in S )
+                    for e in es:
+                        E_ij  = A.monomial( (i,j,e)             )
+                        ec = e.conjugate()
+                        # If the conjugate has a negative sign in front
+                        # of it, (j,i,ec) won't be a monomial!
+                        if (j,i,ec) in A.indices():
+                            E_ij += A.monomial( (j,i,ec) )
+                        else:
+                            E_ij -= A.monomial( (j,i,-ec) )
+                        basis.append(E_ij)
+
+        return tuple( basis )
 
 
+    @staticmethod
+    def trace_inner_product(X,Y):
+        r"""
+        Overload the superclass method because the quaternions are weird
+        and we need to use ``coefficient_tuple()`` to get the realpart.
+
+        SETUP::
+
+            sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
+
+        TESTS::
+
+            sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
+            sage: I = J.one().to_matrix()
+            sage: J.trace_inner_product(I, -I)
+            -2
+
+        """
+        return (X*Y).trace().coefficient_tuple()[0]
+
     def __init__(self, n, field=AA, **kwargs):
         # We know this is a valid EJA, but will double-check
         # if the user passes check_axioms=True.
@@ -2571,7 +2183,7 @@ class QuaternionHermitianEJA(RationalBasisEJA,
         # because the MatrixEJA is not presently a subclass of the
         # FDEJA class that defines rank() and one().
         self.rank.set_cache(n)
-        idV = matrix.identity(ZZ, self.dimension_over_reals()*n)
+        idV = self.matrix_space().one()
         self.one.set_cache(self(idV))
 
 
@@ -2732,26 +2344,26 @@ class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
             27
 
         """
-        from mjo.octonions import OctonionMatrixAlgebra
-        MS = OctonionMatrixAlgebra(n, scalars=field)
-        es = MS.entry_algebra().gens()
+        from mjo.hurwitz import OctonionMatrixAlgebra
+        A = OctonionMatrixAlgebra(n, scalars=field)
+        es = A.entry_algebra_gens()
 
         basis = []
         for i in range(n):
             for j in range(i+1):
                 if i == j:
-                    E_ii = MS.monomial( (i,j,es[0]) )
+                    E_ii = A.monomial( (i,j,es[0]) )
                     basis.append(E_ii)
                 else:
                     for e in es:
-                        E_ij  = MS.monomial( (i,j,e)             )
+                        E_ij  = A.monomial( (i,j,e)             )
                         ec = e.conjugate()
                         # If the conjugate has a negative sign in front
                         # of it, (j,i,ec) won't be a monomial!
-                        if (j,i,ec) in MS.indices():
-                            E_ij += MS.monomial( (j,i,ec) )
+                        if (j,i,ec) in A.indices():
+                            E_ij += A.monomial( (j,i,ec) )
                         else:
-                            E_ij -= MS.monomial( (j,i,-ec) )
+                            E_ij -= A.monomial( (j,i,-ec) )
                         basis.append(E_ij)
 
         return tuple( basis )
@@ -2774,7 +2386,7 @@ class OctonionHermitianEJA(RationalBasisEJA, ConcreteEJA, MatrixEJA):
             -2
 
         """
-        return (X*Y).trace().real().coefficient(0)
+        return (X*Y).trace().coefficient(0)
 
 
 class AlbertEJA(OctonionHermitianEJA):
@@ -2800,12 +2412,13 @@ class AlbertEJA(OctonionHermitianEJA):
 
 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
     """
-    Return the Euclidean Jordan Algebra corresponding to the set
-    `R^n` under the Hadamard product.
+    Return the Euclidean Jordan algebra on `R^n` with the Hadamard
+    (pointwise real-number multiplication) Jordan product and the
+    usual inner-product.
 
-    Note: this is nothing more than the Cartesian product of ``n``
-    copies of the spin algebra. Once Cartesian product algebras
-    are implemented, this can go.
+    This is nothing more than the Cartesian product of ``n`` copies of
+    the one-dimensional Jordan spin algebra, and is the most common
+    example of a non-simple Euclidean Jordan algebra.
 
     SETUP::
 
@@ -2836,7 +2449,6 @@ class HadamardEJA(RationalBasisEJA, ConcreteEJA):
 
         sage: HadamardEJA(3, prefix='r').gens()
         (r0, r1, r2)
-
     """
     def __init__(self, n, field=AA, **kwargs):
         if n == 0: