from sage.all import * load('~/.sage/init.sage') def lagrange_coefficient(k, x, xs): """ Returns the coefficient function l_{k}(variable) of y_{k} in the Lagrange polynomial of f. See, http://en.wikipedia.org/wiki/Lagrange_polynomial for more information. INPUT: - ``k`` -- the index of the coefficient. - ``x`` -- the symbolic variable to use for the first argument of l_{k}. - ``xs`` -- The list of points at which the function values are known. OUTPUT: A symbolic function of one variable. TESTS:: sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] sage: lagrange_coefficient(0, x, xs) 1/8*(pi - 6*x)*(pi - 2*x)*(pi + 6*x)*x/pi^4 """ numerator = product([x - xs[j] for j in range(0, len(xs)) if j != k]) denominator = product([xs[k] - xs[j] for j in range(0, len(xs)) if j != k]) return (numerator / denominator) def lagrange_polynomial(f, x, xs): """ Return the Lagrange form of the interpolation polynomial in `x` of `f` at the points `xs`. INPUT: - ``f`` - The function to interpolate. - ``x`` - The independent variable of the resulting polynomial. - ``xs`` - The list of points at which we interpolate `f`. OUTPUT: A symbolic function (polynomial) interpolating `f` at `xs`. TESTS:: sage: xs = [ -pi/2, -pi/6, 0, pi/6, pi/2 ] sage: L = lagrange_polynomial(sin, x, xs) sage: expected = 27/16*(pi - 6*x)*(pi - 2*x)*(pi + 2*x)*x/pi^4 sage: expected -= 1/8*(pi - 6*x)*(pi - 2*x)*(pi + 6*x)*x/pi^4 sage: expected -= 1/8*(pi - 6*x)*(pi + 2*x)*(pi + 6*x)*x/pi^4 sage: expected += 27/16*(pi - 2*x)*(pi + 2*x)*(pi + 6*x)*x/pi^4 sage: bool(L == expected) True """ ys = [ f(xs[k]) for k in range(0, len(xs)) ] ls = [ lagrange_coefficient(k, x, xs) for k in range(0, len(xs)) ] sigma = sum([ ys[k] * ls[k] for k in range(0, len(xs)) ]) return sigma