from sage.modules.free_module_element import vector from sage.rings.number_field.number_field import NumberField from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.real_lazy import RLF def _mat2vec(m): return vector(m.base_ring(), m.list()) def gram_schmidt(v): """ Perform Gram-Schmidt on the list ``v`` which are assumed to be vectors over the same base ring. Returns a list of orthonormalized vectors over the smallest extention ring containing the necessary roots. SETUP:: sage: from mjo.eja.eja_utils import gram_schmidt EXAMPLES:: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(2,1,-1)) sage: v = [v1,v2,v3] sage: u = gram_schmidt(v) sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u ) True sage: u[0].inner_product(u[1]) == 0 True sage: u[0].inner_product(u[2]) == 0 True sage: u[1].inner_product(u[2]) == 0 True TESTS: Ensure that zero vectors don't get in the way:: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(0,0,0)) sage: v = [v1,v2,v3] sage: len(gram_schmidt(v)) == 2 True """ def proj(x,y): return (y.inner_product(x)/x.inner_product(x))*x v = list(v) # make a copy, don't clobber the input # Drop all zero vectors before we start. v = [ v_i for v_i in v if not v_i.is_zero() ] if len(v) == 0: # cool return v R = v[0].base_ring() # First orthogonalize... for i in xrange(1,len(v)): # Earlier vectors can be made into zero so we have to ignore them. v[i] -= sum( proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() ) # And now drop all zero vectors again if they were "orthogonalized out." v = [ v_i for v_i in v if not v_i.is_zero() ] # Now pretend to normalize, building a new ring R that contains # all of the necessary square roots. norms_squared = [0]*len(v) for i in xrange(len(v)): norms_squared[i] = v[i].inner_product(v[i]) ns = [norms_squared[i].numerator(), norms_squared[i].denominator()] # Do the numerator and denominator separately so that we # adjoin e.g. sqrt(2) and sqrt(3) instead of sqrt(2/3). for j in xrange(len(ns)): PR = PolynomialRing(R, 'z') z = PR.gen() p = z**2 - ns[j] if p.is_irreducible(): R = NumberField(p, 'sqrt' + str(ns[j]), embedding=RLF(ns[j]).sqrt()) # When we're done, we have to change every element's ring to the # extension that we wound up with, and then normalize it (which # should work, since "R" contains its norm now). for i in xrange(len(v)): v[i] = v[i].change_ring(R) / R(norms_squared[i]).sqrt() return v