from sage.functions.other import sqrt from sage.matrix.constructor import matrix from sage.modules.free_module_element import vector def _scale(x, alpha): r""" Scale the vector, matrix, or cartesian-product-of-those-things ``x`` by ``alpha``. This works around the inability to scale certain elements of Cartesian product spaces, as reported in https://trac.sagemath.org/ticket/31435 ..WARNING: This will do the wrong thing if you feed it a tuple or list. SETUP:: sage: from mjo.eja.eja_utils import _scale EXAMPLES:: sage: v = vector(QQ, (1,2,3)) sage: _scale(v,2) (2, 4, 6) sage: m = matrix(QQ, [[1,2],[3,4]]) sage: M = cartesian_product([m.parent(), m.parent()]) sage: _scale(M((m,m)), 2) ([2 4] [6 8], [2 4] [6 8]) """ if hasattr(x, 'cartesian_factors'): P = x.parent() return P(tuple( _scale(x_i, alpha) for x_i in x.cartesian_factors() )) else: return x*alpha def _all2list(x): r""" Flatten a vector, matrix, or cartesian product of those things into a long list. EXAMPLES:: sage: from mjo.eja.eja_utils import _all2list sage: V1 = VectorSpace(QQ,2) sage: V2 = MatrixSpace(QQ,2) sage: x1 = V1([1,1]) sage: x2 = V1([1,-1]) sage: y1 = V2.one() sage: y2 = V2([0,1,1,0]) sage: _all2list((x1,y1)) [1, 1, 1, 0, 0, 1] sage: _all2list((x2,y2)) [1, -1, 0, 1, 1, 0] sage: M = cartesian_product([V1,V2]) sage: _all2list(M((x1,y1))) [1, 1, 1, 0, 0, 1] sage: _all2list(M((x2,y2))) [1, -1, 0, 1, 1, 0] """ if hasattr(x, 'list'): # Easy case... return x.list() else: # But what if it's a tuple or something else? This has to # handle cartesian products of cartesian products, too; that's # why it's recursive. return sum( map(_all2list,x), [] ) def _mat2vec(m): return vector(m.base_ring(), m.list()) def _vec2mat(v): return matrix(v.base_ring(), sqrt(v.degree()), v.list()) def gram_schmidt(v, inner_product=None): """ Perform Gram-Schmidt on the list ``v`` which are assumed to be vectors over the same base ring. Returns a list of orthonormalized vectors over the smallest extention ring containing the necessary roots. SETUP:: sage: from mjo.eja.eja_utils import gram_schmidt EXAMPLES: The usual inner-product and norm are default:: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(2,1,-1)) sage: v = [v1,v2,v3] sage: u = gram_schmidt(v) sage: all( u_i.inner_product(u_i).sqrt() == 1 for u_i in u ) True sage: bool(u[0].inner_product(u[1]) == 0) True sage: bool(u[0].inner_product(u[2]) == 0) True sage: bool(u[1].inner_product(u[2]) == 0) True But if you supply a custom inner product, the result is orthonormal with respect to that (and not the usual inner product):: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(2,1,-1)) sage: v = [v1,v2,v3] sage: B = matrix(QQ, [ [6, 4, 2], ....: [4, 5, 4], ....: [2, 4, 9] ]) sage: ip = lambda x,y: (B*x).inner_product(y) sage: norm = lambda x: ip(x,x) sage: u = gram_schmidt(v,ip) sage: all( norm(u_i) == 1 for u_i in u ) True sage: ip(u[0],u[1]).is_zero() True sage: ip(u[0],u[2]).is_zero() True sage: ip(u[1],u[2]).is_zero() True This Gram-Schmidt routine can be used on matrices as well, so long as an appropriate inner-product is provided:: sage: E11 = matrix(QQ, [ [1,0], ....: [0,0] ]) sage: E12 = matrix(QQ, [ [0,1], ....: [1,0] ]) sage: E22 = matrix(QQ, [ [0,0], ....: [0,1] ]) sage: I = matrix.identity(QQ,2) sage: trace_ip = lambda X,Y: (X*Y).trace() sage: gram_schmidt([E11,E12,I,E22], inner_product=trace_ip) [ [1 0] [ 0 1/2*sqrt(2)] [0 0] [0 0], [1/2*sqrt(2) 0], [0 1] ] It even works on Cartesian product spaces whose factors are vector or matrix spaces:: sage: V1 = VectorSpace(AA,2) sage: V2 = MatrixSpace(AA,2) sage: M = cartesian_product([V1,V2]) sage: x1 = V1([1,1]) sage: x2 = V1([1,-1]) sage: y1 = V2.one() sage: y2 = V2([0,1,1,0]) sage: z1 = M((x1,y1)) sage: z2 = M((x2,y2)) sage: def ip(a,b): ....: return a[0].inner_product(b[0]) + (a[1]*b[1]).trace() sage: U = gram_schmidt([z1,z2], inner_product=ip) sage: ip(U[0],U[1]) 0 sage: ip(U[0],U[0]) 1 sage: ip(U[1],U[1]) 1 TESTS: Ensure that zero vectors don't get in the way:: sage: v1 = vector(QQ,(1,2,3)) sage: v2 = vector(QQ,(1,-1,6)) sage: v3 = vector(QQ,(0,0,0)) sage: v = [v1,v2,v3] sage: len(gram_schmidt(v)) == 2 True """ if inner_product is None: inner_product = lambda x,y: x.inner_product(y) norm = lambda x: inner_product(x,x).sqrt() v = list(v) # make a copy, don't clobber the input # Drop all zero vectors before we start. v = [ v_i for v_i in v if not v_i.is_zero() ] if len(v) == 0: # cool return v R = v[0].base_ring() # Our "zero" needs to belong to the right space for sum() to work. zero = v[0].parent().zero() sc = lambda x,a: a*x if hasattr(v[0], 'cartesian_factors'): # Only use the slow implementation if necessary. sc = _scale def proj(x,y): return sc(x, (inner_product(x,y)/inner_product(x,x))) # First orthogonalize... for i in range(1,len(v)): # Earlier vectors can be made into zero so we have to ignore them. v[i] -= sum( (proj(v[j],v[i]) for j in range(i) if not v[j].is_zero() ), zero ) # And now drop all zero vectors again if they were "orthogonalized out." v = [ v_i for v_i in v if not v_i.is_zero() ] # Just normalize. If the algebra is missing the roots, we can't add # them here because then our subalgebra would have a bigger field # than the superalgebra. for i in range(len(v)): v[i] = sc(v[i], ~norm(v[i])) return v