1. Add references and start citing them. 2. Pre-cache charpoly for some small algebras? RealSymmetricEJA(4): sage: F = J.base_ring() sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] 3. Profile the construction of "large" matrix algebras (like the 15-dimensional QuaternionHermitianAlgebra(3)) to find out why they're so slow. 4. Instead of storing a basis multiplication matrix, just make product_on_basis() a cached method and manually cache its entries. The cython cached method lookup should be faster than a python-based matrix lookup anyway. NOTE: we should still be able to recompute the table somehow. Is this worth it? 5. What the ever-loving fuck is this shit? sage: O = Octonions(QQ) sage: e0 = O.monomial(0) sage: e0*[[[[]]]] [[[[]]]]*e0 6. Can we convert the complex/quaternion algebras to avoid real- (un)embeddings? Quaternions would need their own QuaternionMatrixAlgebra, since Sage matrices have to have entries in a commutative ring. 7. Every once in a long while, the test sage: set_random_seed() sage: x = random_eja().random_element() sage: x.is_invertible() == (x.det() != 0) in eja_element.py returns False.