1. Add references and start citing them. 2. Pre-cache charpoly for some small algebras? RealSymmetricEJA(4): sage: F = J.base_ring() sage: a0 = (1/4)*X[4]**2*X[6]**2 - (1/2)*X[2]*X[5]*X[6]**2 - (1/2)*X[3]*X[4]*X[6]*X[7] + (F(2).sqrt()/2)*X[1]*X[5]*X[6]*X[7] + (1/4)*X[3]**2*X[7]**2 - (1/2)*X[0]*X[5]*X[7]**2 + (F(2).sqrt()/2)*X[2]*X[3]*X[6]*X[8] - (1/2)*X[1]*X[4]*X[6*X[8] - (1/2)*X[1]*X[3]*X[7]*X[8] + (F(2).sqrt()/2)*X[0]*X[4]*X[7]*X[8] + (1/4)*X[1]**2*X[8]**2 - (1/2)*X[0]*X[2]*X[8]**2 - (1/2)*X[2]*X[3]**2*X[9] + (F(2).sqrt()/2)*X[1]*X[3]*X[4]*X[9] - (1/2)*X[0]*X[4]**2*X[9] - (1/2)*X[1]**2*X[5]*X[9] + X[0]*X[2]*X[5]*X[9] 3. Profile the construction of "large" matrix algebras (like the 15-dimensional QuaternionHermitianAlgebra(3)) to find out why they're so slow. 4. Instead of storing a basis multiplication matrix, just make product_on_basis() a cached method and manually cache its entries. The cython cached method lookup should be faster than a python-based matrix lookup anyway. NOTE: we should still be able to recompute the table somehow. Is this worth it? 5. What the ever-loving fuck is this shit? sage: O = Octonions(QQ) sage: e0 = O.monomial(0) sage: e0*[[[[]]]] [[[[]]]]*e0 6. In fact, could my octonion matrix algebra be generalized for any algebra of matrices over the reals whose entries are not real? Then we wouldn't need real embeddings at all. They might even be fricking vector spaces if I did that... 7. Every once in a long while, the test sage: set_random_seed() sage: x = random_eja().random_element() sage: x.is_invertible() == (x.det() != 0) in eja_element.py returns False. 8. Add an alias for AlbertAlgebra.