]> gitweb.michael.orlitzky.com - sage.d.git/blob - mjo/eja/eja_algebra.py
eja: rename operator_inner_product -> operator_trace inner_product.
[sage.d.git] / mjo / eja / eja_algebra.py
1 r"""
2 Representations and constructions for Euclidean Jordan algebras.
3
4 A Euclidean Jordan algebra is a Jordan algebra that has some
5 additional properties:
6
7 1. It is finite-dimensional.
8 2. Its scalar field is the real numbers.
9 3a. An inner product is defined on it, and...
10 3b. That inner product is compatible with the Jordan product
11 in the sense that `<x*y,z> = <y,x*z>` for all elements
12 `x,y,z` in the algebra.
13
14 Every Euclidean Jordan algebra is formally-real: for any two elements
15 `x` and `y` in the algebra, `x^{2} + y^{2} = 0` implies that `x = y =
16 0`. Conversely, every finite-dimensional formally-real Jordan algebra
17 can be made into a Euclidean Jordan algebra with an appropriate choice
18 of inner-product.
19
20 Formally-real Jordan algebras were originally studied as a framework
21 for quantum mechanics. Today, Euclidean Jordan algebras are crucial in
22 symmetric cone optimization, since every symmetric cone arises as the
23 cone of squares in some Euclidean Jordan algebra.
24
25 It is known that every Euclidean Jordan algebra decomposes into an
26 orthogonal direct sum (essentially, a Cartesian product) of simple
27 algebras, and that moreover, up to Jordan-algebra isomorphism, there
28 are only five families of simple algebras. We provide constructions
29 for these simple algebras:
30
31 * :class:`BilinearFormEJA`
32 * :class:`RealSymmetricEJA`
33 * :class:`ComplexHermitianEJA`
34 * :class:`QuaternionHermitianEJA`
35 * :class:`OctonionHermitianEJA`
36
37 In addition to these, we provide a few other example constructions,
38
39 * :class:`JordanSpinEJA`
40 * :class:`HadamardEJA`
41 * :class:`AlbertEJA`
42 * :class:`TrivialEJA`
43 * :class:`ComplexSkewSymmetricEJA`
44
45 The Jordan spin algebra is a bilinear form algebra where the bilinear
46 form is the identity. The Hadamard EJA is simply a Cartesian product
47 of one-dimensional spin algebras. The Albert EJA is simply a special
48 case of the :class:`OctonionHermitianEJA` where the matrices are
49 three-by-three and the resulting space has dimension 27. And
50 last/least, the trivial EJA is exactly what you think it is; it could
51 also be obtained by constructing a dimension-zero instance of any of
52 the other algebras. Cartesian products of these are also supported
53 using the usual ``cartesian_product()`` function; as a result, we
54 support (up to isomorphism) all Euclidean Jordan algebras.
55
56 At a minimum, the following are required to construct a Euclidean
57 Jordan algebra:
58
59 * A basis of matrices, column vectors, or MatrixAlgebra elements
60 * A Jordan product defined on the basis
61 * Its inner product defined on the basis
62
63 The real numbers form a Euclidean Jordan algebra when both the Jordan
64 and inner products are the usual multiplication. We use this as our
65 example, and demonstrate a few ways to construct an EJA.
66
67 First, we can use one-by-one SageMath matrices with algebraic real
68 entries to represent real numbers. We define the Jordan and inner
69 products to be essentially real-number multiplication, with the only
70 difference being that the Jordan product again returns a one-by-one
71 matrix, whereas the inner product must return a scalar. Our basis for
72 the one-by-one matrices is of course the set consisting of a single
73 matrix with its sole entry non-zero::
74
75 sage: from mjo.eja.eja_algebra import FiniteDimensionalEJA
76 sage: jp = lambda X,Y: X*Y
77 sage: ip = lambda X,Y: X[0,0]*Y[0,0]
78 sage: b1 = matrix(AA, [[1]])
79 sage: J1 = FiniteDimensionalEJA((b1,), jp, ip)
80 sage: J1
81 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
82
83 In fact, any positive scalar multiple of that inner-product would work::
84
85 sage: ip2 = lambda X,Y: 16*ip(X,Y)
86 sage: J2 = FiniteDimensionalEJA((b1,), jp, ip2)
87 sage: J2
88 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
89
90 But beware that your basis will be orthonormalized _with respect to the
91 given inner-product_ unless you pass ``orthonormalize=False`` to the
92 constructor. For example::
93
94 sage: J3 = FiniteDimensionalEJA((b1,), jp, ip2, orthonormalize=False)
95 sage: J3
96 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
97
98 To see the difference, you can take the first and only basis element
99 of the resulting algebra, and ask for it to be converted back into
100 matrix form::
101
102 sage: J1.basis()[0].to_matrix()
103 [1]
104 sage: J2.basis()[0].to_matrix()
105 [1/4]
106 sage: J3.basis()[0].to_matrix()
107 [1]
108
109 Since square roots are used in that process, the default scalar field
110 that we use is the field of algebraic real numbers, ``AA``. You can
111 also Use rational numbers, but only if you either pass
112 ``orthonormalize=False`` or know that orthonormalizing your basis
113 won't stray beyond the rational numbers. The example above would
114 have worked only because ``sqrt(16) == 4`` is rational.
115
116 Another option for your basis is to use elemebts of a
117 :class:`MatrixAlgebra`::
118
119 sage: from mjo.matrix_algebra import MatrixAlgebra
120 sage: A = MatrixAlgebra(1,AA,AA)
121 sage: J4 = FiniteDimensionalEJA(A.gens(), jp, ip)
122 sage: J4
123 Euclidean Jordan algebra of dimension 1 over Algebraic Real Field
124 sage: J4.basis()[0].to_matrix()
125 +---+
126 | 1 |
127 +---+
128
129 An easier way to view the entire EJA basis in its original (but
130 perhaps orthonormalized) matrix form is to use the ``matrix_basis``
131 method::
132
133 sage: J4.matrix_basis()
134 (+---+
135 | 1 |
136 +---+,)
137
138 In particular, a :class:`MatrixAlgebra` is needed to work around the
139 fact that matrices in SageMath must have entries in the same
140 (commutative and associative) ring as its scalars. There are many
141 Euclidean Jordan algebras whose elements are matrices that violate
142 those assumptions. The complex, quaternion, and octonion Hermitian
143 matrices all have entries in a ring (the complex numbers, quaternions,
144 or octonions...) that differs from the algebra's scalar ring (the real
145 numbers). Quaternions are also non-commutative; the octonions are
146 neither commutative nor associative.
147
148 SETUP::
149
150 sage: from mjo.eja.eja_algebra import random_eja
151
152 EXAMPLES::
153
154 sage: random_eja()
155 Euclidean Jordan algebra of dimension...
156 """
157
158 from sage.algebras.quatalg.quaternion_algebra import QuaternionAlgebra
159 from sage.categories.magmatic_algebras import MagmaticAlgebras
160 from sage.categories.sets_cat import cartesian_product
161 from sage.combinat.free_module import CombinatorialFreeModule
162 from sage.matrix.constructor import matrix
163 from sage.matrix.matrix_space import MatrixSpace
164 from sage.misc.cachefunc import cached_method
165 from sage.misc.table import table
166 from sage.modules.free_module import FreeModule, VectorSpace
167 from sage.rings.all import (ZZ, QQ, AA, QQbar, RR, RLF, CLF,
168 PolynomialRing,
169 QuadraticField)
170 from mjo.eja.eja_element import (CartesianProductEJAElement,
171 FiniteDimensionalEJAElement)
172 from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
173 from mjo.eja.eja_utils import _all2list
174
175 def EuclideanJordanAlgebras(field):
176 r"""
177 The category of Euclidean Jordan algebras over ``field``, which
178 must be a subfield of the real numbers. For now this is just a
179 convenient wrapper around all of the other category axioms that
180 apply to all EJAs.
181 """
182 category = MagmaticAlgebras(field).FiniteDimensional()
183 category = category.WithBasis().Unital().Commutative()
184 return category
185
186 class FiniteDimensionalEJA(CombinatorialFreeModule):
187 r"""
188 A finite-dimensional Euclidean Jordan algebra.
189
190 INPUT:
191
192 - ``basis`` -- a tuple; a tuple of basis elements in "matrix
193 form," which must be the same form as the arguments to
194 ``jordan_product`` and ``inner_product``. In reality, "matrix
195 form" can be either vectors, matrices, or a Cartesian product
196 (ordered tuple) of vectors or matrices. All of these would
197 ideally be vector spaces in sage with no special-casing
198 needed; but in reality we turn vectors into column-matrices
199 and Cartesian products `(a,b)` into column matrices
200 `(a,b)^{T}` after converting `a` and `b` themselves.
201
202 - ``jordan_product`` -- a function; afunction of two ``basis``
203 elements (in matrix form) that returns their jordan product,
204 also in matrix form; this will be applied to ``basis`` to
205 compute a multiplication table for the algebra.
206
207 - ``inner_product`` -- a function; a function of two ``basis``
208 elements (in matrix form) that returns their inner
209 product. This will be applied to ``basis`` to compute an
210 inner-product table (basically a matrix) for this algebra.
211
212 - ``matrix_space`` -- the space that your matrix basis lives in,
213 or ``None`` (the default). So long as your basis does not have
214 length zero you can omit this. But in trivial algebras, it is
215 required.
216
217 - ``field`` -- a subfield of the reals (default: ``AA``); the scalar
218 field for the algebra.
219
220 - ``orthonormalize`` -- boolean (default: ``True``); whether or
221 not to orthonormalize the basis. Doing so is expensive and
222 generally rules out using the rationals as your ``field``, but
223 is required for spectral decompositions.
224
225 SETUP::
226
227 sage: from mjo.eja.eja_algebra import random_eja
228
229 TESTS:
230
231 We should compute that an element subalgebra is associative even
232 if we circumvent the element method::
233
234 sage: J = random_eja(field=QQ,orthonormalize=False)
235 sage: x = J.random_element()
236 sage: A = x.subalgebra_generated_by(orthonormalize=False)
237 sage: basis = tuple(b.superalgebra_element() for b in A.basis())
238 sage: J.subalgebra(basis, orthonormalize=False).is_associative()
239 True
240 """
241 Element = FiniteDimensionalEJAElement
242
243 @staticmethod
244 def _check_input_field(field):
245 if not field.is_subring(RR):
246 # Note: this does return true for the real algebraic
247 # field, the rationals, and any quadratic field where
248 # we've specified a real embedding.
249 raise ValueError("scalar field is not real")
250
251 @staticmethod
252 def _check_input_axioms(basis, jordan_product, inner_product):
253 if not all( jordan_product(bi,bj) == jordan_product(bj,bi)
254 for bi in basis
255 for bj in basis ):
256 raise ValueError("Jordan product is not commutative")
257
258 if not all( inner_product(bi,bj) == inner_product(bj,bi)
259 for bi in basis
260 for bj in basis ):
261 raise ValueError("inner-product is not commutative")
262
263 def __init__(self,
264 basis,
265 jordan_product,
266 inner_product,
267 field=AA,
268 matrix_space=None,
269 orthonormalize=True,
270 associative=None,
271 check_field=True,
272 check_axioms=True,
273 prefix="b"):
274
275 n = len(basis)
276
277 if check_field:
278 self._check_input_field(field)
279
280 if check_axioms:
281 # Check commutativity of the Jordan and inner-products.
282 # This has to be done before we build the multiplication
283 # and inner-product tables/matrices, because we take
284 # advantage of symmetry in the process.
285 self._check_input_axioms(basis, jordan_product, inner_product)
286
287 if n <= 1:
288 # All zero- and one-dimensional algebras are just the real
289 # numbers with (some positive multiples of) the usual
290 # multiplication as its Jordan and inner-product.
291 associative = True
292 if associative is None:
293 # We should figure it out. As with check_axioms, we have to do
294 # this without the help of the _jordan_product_is_associative()
295 # method because we need to know the category before we
296 # initialize the algebra.
297 associative = all( jordan_product(jordan_product(bi,bj),bk)
298 ==
299 jordan_product(bi,jordan_product(bj,bk))
300 for bi in basis
301 for bj in basis
302 for bk in basis)
303
304 category = EuclideanJordanAlgebras(field)
305
306 if associative:
307 # Element subalgebras can take advantage of this.
308 category = category.Associative()
309
310 # Call the superclass constructor so that we can use its from_vector()
311 # method to build our multiplication table.
312 CombinatorialFreeModule.__init__(self,
313 field,
314 range(n),
315 prefix=prefix,
316 category=category,
317 bracket=False)
318
319 # Now comes all of the hard work. We'll be constructing an
320 # ambient vector space V that our (vectorized) basis lives in,
321 # as well as a subspace W of V spanned by those (vectorized)
322 # basis elements. The W-coordinates are the coefficients that
323 # we see in things like x = 1*b1 + 2*b2.
324
325 degree = 0
326 if n > 0:
327 degree = len(_all2list(basis[0]))
328
329 # Build an ambient space that fits our matrix basis when
330 # written out as "long vectors."
331 V = VectorSpace(field, degree)
332
333 # The matrix that will hold the orthonormal -> unorthonormal
334 # coordinate transformation. Default to an identity matrix of
335 # the appropriate size to avoid special cases for None
336 # everywhere.
337 self._deortho_matrix = matrix.identity(field,n)
338
339 if orthonormalize:
340 # Save a copy of the un-orthonormalized basis for later.
341 # Convert it to ambient V (vector) coordinates while we're
342 # at it, because we'd have to do it later anyway.
343 deortho_vector_basis = tuple( V(_all2list(b)) for b in basis )
344
345 from mjo.eja.eja_utils import gram_schmidt
346 basis = tuple(gram_schmidt(basis, inner_product))
347
348 # Save the (possibly orthonormalized) matrix basis for
349 # later, as well as the space that its elements live in.
350 # In most cases we can deduce the matrix space, but when
351 # n == 0 (that is, there are no basis elements) we cannot.
352 self._matrix_basis = basis
353 if matrix_space is None:
354 self._matrix_space = self._matrix_basis[0].parent()
355 else:
356 self._matrix_space = matrix_space
357
358 # Now create the vector space for the algebra, which will have
359 # its own set of non-ambient coordinates (in terms of the
360 # supplied basis).
361 vector_basis = tuple( V(_all2list(b)) for b in basis )
362
363 # Save the span of our matrix basis (when written out as long
364 # vectors) because otherwise we'll have to reconstruct it
365 # every time we want to coerce a matrix into the algebra.
366 self._matrix_span = V.span_of_basis( vector_basis, check=check_axioms)
367
368 if orthonormalize:
369 # Now "self._matrix_span" is the vector space of our
370 # algebra coordinates. The variables "X0", "X1",... refer
371 # to the entries of vectors in self._matrix_span. Thus to
372 # convert back and forth between the orthonormal
373 # coordinates and the given ones, we need to stick the
374 # original basis in self._matrix_span.
375 U = V.span_of_basis( deortho_vector_basis, check=check_axioms)
376 self._deortho_matrix = matrix.column( U.coordinate_vector(q)
377 for q in vector_basis )
378
379
380 # Now we actually compute the multiplication and inner-product
381 # tables/matrices using the possibly-orthonormalized basis.
382 self._inner_product_matrix = matrix.identity(field, n)
383 zed = self.zero()
384 self._multiplication_table = [ [zed for j in range(i+1)]
385 for i in range(n) ]
386
387 # Note: the Jordan and inner-products are defined in terms
388 # of the ambient basis. It's important that their arguments
389 # are in ambient coordinates as well.
390 for i in range(n):
391 for j in range(i+1):
392 # ortho basis w.r.t. ambient coords
393 q_i = basis[i]
394 q_j = basis[j]
395
396 # The jordan product returns a matrixy answer, so we
397 # have to convert it to the algebra coordinates.
398 elt = jordan_product(q_i, q_j)
399 elt = self._matrix_span.coordinate_vector(V(_all2list(elt)))
400 self._multiplication_table[i][j] = self.from_vector(elt)
401
402 if not orthonormalize:
403 # If we're orthonormalizing the basis with respect
404 # to an inner-product, then the inner-product
405 # matrix with respect to the resulting basis is
406 # just going to be the identity.
407 ip = inner_product(q_i, q_j)
408 self._inner_product_matrix[i,j] = ip
409 self._inner_product_matrix[j,i] = ip
410
411 self._inner_product_matrix._cache = {'hermitian': True}
412 self._inner_product_matrix.set_immutable()
413
414 if check_axioms:
415 if not self._is_jordanian():
416 raise ValueError("Jordan identity does not hold")
417 if not self._inner_product_is_associative():
418 raise ValueError("inner product is not associative")
419
420
421 def _coerce_map_from_base_ring(self):
422 """
423 Disable the map from the base ring into the algebra.
424
425 Performing a nonsense conversion like this automatically
426 is counterpedagogical. The fallback is to try the usual
427 element constructor, which should also fail.
428
429 SETUP::
430
431 sage: from mjo.eja.eja_algebra import random_eja
432
433 TESTS::
434
435 sage: J = random_eja()
436 sage: J(1)
437 Traceback (most recent call last):
438 ...
439 ValueError: not an element of this algebra
440
441 """
442 return None
443
444
445 def product_on_basis(self, i, j):
446 r"""
447 Returns the Jordan product of the `i` and `j`th basis elements.
448
449 This completely defines the Jordan product on the algebra, and
450 is used direclty by our superclass machinery to implement
451 :meth:`product`.
452
453 SETUP::
454
455 sage: from mjo.eja.eja_algebra import random_eja
456
457 TESTS::
458
459 sage: J = random_eja()
460 sage: n = J.dimension()
461 sage: bi = J.zero()
462 sage: bj = J.zero()
463 sage: bi_bj = J.zero()*J.zero()
464 sage: if n > 0:
465 ....: i = ZZ.random_element(n)
466 ....: j = ZZ.random_element(n)
467 ....: bi = J.monomial(i)
468 ....: bj = J.monomial(j)
469 ....: bi_bj = J.product_on_basis(i,j)
470 sage: bi*bj == bi_bj
471 True
472
473 """
474 # We only stored the lower-triangular portion of the
475 # multiplication table.
476 if j <= i:
477 return self._multiplication_table[i][j]
478 else:
479 return self._multiplication_table[j][i]
480
481 def inner_product(self, x, y):
482 """
483 The inner product associated with this Euclidean Jordan algebra.
484
485 Defaults to the trace inner product, but can be overridden by
486 subclasses if they are sure that the necessary properties are
487 satisfied.
488
489 SETUP::
490
491 sage: from mjo.eja.eja_algebra import (random_eja,
492 ....: HadamardEJA,
493 ....: BilinearFormEJA)
494
495 EXAMPLES:
496
497 Our inner product is "associative," which means the following for
498 a symmetric bilinear form::
499
500 sage: J = random_eja()
501 sage: x,y,z = J.random_elements(3)
502 sage: (x*y).inner_product(z) == y.inner_product(x*z)
503 True
504
505 TESTS:
506
507 Ensure that this is the usual inner product for the algebras
508 over `R^n`::
509
510 sage: J = HadamardEJA.random_instance()
511 sage: x,y = J.random_elements(2)
512 sage: actual = x.inner_product(y)
513 sage: expected = x.to_vector().inner_product(y.to_vector())
514 sage: actual == expected
515 True
516
517 Ensure that this is one-half of the trace inner-product in a
518 BilinearFormEJA that isn't just the reals (when ``n`` isn't
519 one). This is in Faraut and Koranyi, and also my "On the
520 symmetry..." paper::
521
522 sage: J = BilinearFormEJA.random_instance()
523 sage: n = J.dimension()
524 sage: x = J.random_element()
525 sage: y = J.random_element()
526 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
527 True
528
529 """
530 B = self._inner_product_matrix
531 return (B*x.to_vector()).inner_product(y.to_vector())
532
533
534 def is_associative(self):
535 r"""
536 Return whether or not this algebra's Jordan product is associative.
537
538 SETUP::
539
540 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
541
542 EXAMPLES::
543
544 sage: J = ComplexHermitianEJA(3, field=QQ, orthonormalize=False)
545 sage: J.is_associative()
546 False
547 sage: x = sum(J.gens())
548 sage: A = x.subalgebra_generated_by(orthonormalize=False)
549 sage: A.is_associative()
550 True
551
552 """
553 return "Associative" in self.category().axioms()
554
555 def _is_commutative(self):
556 r"""
557 Whether or not this algebra's multiplication table is commutative.
558
559 This method should of course always return ``True``, unless
560 this algebra was constructed with ``check_axioms=False`` and
561 passed an invalid multiplication table.
562 """
563 return all( x*y == y*x for x in self.gens() for y in self.gens() )
564
565 def _is_jordanian(self):
566 r"""
567 Whether or not this algebra's multiplication table respects the
568 Jordan identity `(x^{2})(xy) = x(x^{2}y)`.
569
570 We only check one arrangement of `x` and `y`, so for a
571 ``True`` result to be truly true, you should also check
572 :meth:`_is_commutative`. This method should of course always
573 return ``True``, unless this algebra was constructed with
574 ``check_axioms=False`` and passed an invalid multiplication table.
575 """
576 return all( (self.monomial(i)**2)*(self.monomial(i)*self.monomial(j))
577 ==
578 (self.monomial(i))*((self.monomial(i)**2)*self.monomial(j))
579 for i in range(self.dimension())
580 for j in range(self.dimension()) )
581
582 def _jordan_product_is_associative(self):
583 r"""
584 Return whether or not this algebra's Jordan product is
585 associative; that is, whether or not `x*(y*z) = (x*y)*z`
586 for all `x,y,x`.
587
588 This method should agree with :meth:`is_associative` unless
589 you lied about the value of the ``associative`` parameter
590 when you constructed the algebra.
591
592 SETUP::
593
594 sage: from mjo.eja.eja_algebra import (random_eja,
595 ....: RealSymmetricEJA,
596 ....: ComplexHermitianEJA,
597 ....: QuaternionHermitianEJA)
598
599 EXAMPLES::
600
601 sage: J = RealSymmetricEJA(4, orthonormalize=False)
602 sage: J._jordan_product_is_associative()
603 False
604 sage: x = sum(J.gens())
605 sage: A = x.subalgebra_generated_by()
606 sage: A._jordan_product_is_associative()
607 True
608
609 ::
610
611 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
612 sage: J._jordan_product_is_associative()
613 False
614 sage: x = sum(J.gens())
615 sage: A = x.subalgebra_generated_by(orthonormalize=False)
616 sage: A._jordan_product_is_associative()
617 True
618
619 ::
620
621 sage: J = QuaternionHermitianEJA(2)
622 sage: J._jordan_product_is_associative()
623 False
624 sage: x = sum(J.gens())
625 sage: A = x.subalgebra_generated_by()
626 sage: A._jordan_product_is_associative()
627 True
628
629 TESTS:
630
631 The values we've presupplied to the constructors agree with
632 the computation::
633
634 sage: J = random_eja()
635 sage: J.is_associative() == J._jordan_product_is_associative()
636 True
637
638 """
639 R = self.base_ring()
640
641 # Used to check whether or not something is zero.
642 epsilon = R.zero()
643 if not R.is_exact():
644 # I don't know of any examples that make this magnitude
645 # necessary because I don't know how to make an
646 # associative algebra when the element subalgebra
647 # construction is unreliable (as it is over RDF; we can't
648 # find the degree of an element because we can't compute
649 # the rank of a matrix). But even multiplication of floats
650 # is non-associative, so *some* epsilon is needed... let's
651 # just take the one from _inner_product_is_associative?
652 epsilon = 1e-15
653
654 for i in range(self.dimension()):
655 for j in range(self.dimension()):
656 for k in range(self.dimension()):
657 x = self.monomial(i)
658 y = self.monomial(j)
659 z = self.monomial(k)
660 diff = (x*y)*z - x*(y*z)
661
662 if diff.norm() > epsilon:
663 return False
664
665 return True
666
667 def _inner_product_is_associative(self):
668 r"""
669 Return whether or not this algebra's inner product `B` is
670 associative; that is, whether or not `B(xy,z) = B(x,yz)`.
671
672 This method should of course always return ``True``, unless
673 this algebra was constructed with ``check_axioms=False`` and
674 passed an invalid Jordan or inner-product.
675 """
676 R = self.base_ring()
677
678 # Used to check whether or not something is zero.
679 epsilon = R.zero()
680 if not R.is_exact():
681 # This choice is sufficient to allow the construction of
682 # QuaternionHermitianEJA(2, field=RDF) with check_axioms=True.
683 epsilon = 1e-15
684
685 for i in range(self.dimension()):
686 for j in range(self.dimension()):
687 for k in range(self.dimension()):
688 x = self.monomial(i)
689 y = self.monomial(j)
690 z = self.monomial(k)
691 diff = (x*y).inner_product(z) - x.inner_product(y*z)
692
693 if diff.abs() > epsilon:
694 return False
695
696 return True
697
698 def _element_constructor_(self, elt):
699 """
700 Construct an element of this algebra or a subalgebra from its
701 EJA element, vector, or matrix representation.
702
703 This gets called only after the parent element _call_ method
704 fails to find a coercion for the argument.
705
706 SETUP::
707
708 sage: from mjo.eja.eja_algebra import (random_eja,
709 ....: JordanSpinEJA,
710 ....: HadamardEJA,
711 ....: RealSymmetricEJA)
712
713 EXAMPLES:
714
715 The identity in `S^n` is converted to the identity in the EJA::
716
717 sage: J = RealSymmetricEJA(3)
718 sage: I = matrix.identity(QQ,3)
719 sage: J(I) == J.one()
720 True
721
722 This skew-symmetric matrix can't be represented in the EJA::
723
724 sage: J = RealSymmetricEJA(3)
725 sage: A = matrix(QQ,3, lambda i,j: i-j)
726 sage: J(A)
727 Traceback (most recent call last):
728 ...
729 ValueError: not an element of this algebra
730
731 Tuples work as well, provided that the matrix basis for the
732 algebra consists of them::
733
734 sage: J1 = HadamardEJA(3)
735 sage: J2 = RealSymmetricEJA(2)
736 sage: J = cartesian_product([J1,J2])
737 sage: J( (J1.matrix_basis()[1], J2.matrix_basis()[2]) )
738 b1 + b5
739
740 Subalgebra elements are embedded into the superalgebra::
741
742 sage: J = JordanSpinEJA(3)
743 sage: J.one()
744 b0
745 sage: x = sum(J.gens())
746 sage: A = x.subalgebra_generated_by()
747 sage: J(A.one())
748 b0
749
750 TESTS:
751
752 Ensure that we can convert any element back and forth
753 faithfully between its matrix and algebra representations::
754
755 sage: J = random_eja()
756 sage: x = J.random_element()
757 sage: J(x.to_matrix()) == x
758 True
759
760 We cannot coerce elements between algebras just because their
761 matrix representations are compatible::
762
763 sage: J1 = HadamardEJA(3)
764 sage: J2 = JordanSpinEJA(3)
765 sage: J2(J1.one())
766 Traceback (most recent call last):
767 ...
768 ValueError: not an element of this algebra
769 sage: J1(J2.zero())
770 Traceback (most recent call last):
771 ...
772 ValueError: not an element of this algebra
773
774 """
775 msg = "not an element of this algebra"
776 if elt in self.base_ring():
777 # Ensure that no base ring -> algebra coercion is performed
778 # by this method. There's some stupidity in sage that would
779 # otherwise propagate to this method; for example, sage thinks
780 # that the integer 3 belongs to the space of 2-by-2 matrices.
781 raise ValueError(msg)
782
783 if hasattr(elt, 'superalgebra_element'):
784 # Handle subalgebra elements
785 if elt.parent().superalgebra() == self:
786 return elt.superalgebra_element()
787
788 if hasattr(elt, 'sparse_vector'):
789 # Convert a vector into a column-matrix. We check for
790 # "sparse_vector" and not "column" because matrices also
791 # have a "column" method.
792 elt = elt.column()
793
794 if elt not in self.matrix_space():
795 raise ValueError(msg)
796
797 # Thanks for nothing! Matrix spaces aren't vector spaces in
798 # Sage, so we have to figure out its matrix-basis coordinates
799 # ourselves. We use the basis space's ring instead of the
800 # element's ring because the basis space might be an algebraic
801 # closure whereas the base ring of the 3-by-3 identity matrix
802 # could be QQ instead of QQbar.
803 #
804 # And, we also have to handle Cartesian product bases (when
805 # the matrix basis consists of tuples) here. The "good news"
806 # is that we're already converting everything to long vectors,
807 # and that strategy works for tuples as well.
808 #
809 elt = self._matrix_span.ambient_vector_space()(_all2list(elt))
810
811 try:
812 coords = self._matrix_span.coordinate_vector(elt)
813 except ArithmeticError: # vector is not in free module
814 raise ValueError(msg)
815
816 return self.from_vector(coords)
817
818 def _repr_(self):
819 """
820 Return a string representation of ``self``.
821
822 SETUP::
823
824 sage: from mjo.eja.eja_algebra import JordanSpinEJA
825
826 TESTS:
827
828 Ensure that it says what we think it says::
829
830 sage: JordanSpinEJA(2, field=AA)
831 Euclidean Jordan algebra of dimension 2 over Algebraic Real Field
832 sage: JordanSpinEJA(3, field=RDF)
833 Euclidean Jordan algebra of dimension 3 over Real Double Field
834
835 """
836 fmt = "Euclidean Jordan algebra of dimension {} over {}"
837 return fmt.format(self.dimension(), self.base_ring())
838
839
840 @cached_method
841 def characteristic_polynomial_of(self):
842 """
843 Return the algebra's "characteristic polynomial of" function,
844 which is itself a multivariate polynomial that, when evaluated
845 at the coordinates of some algebra element, returns that
846 element's characteristic polynomial.
847
848 The resulting polynomial has `n+1` variables, where `n` is the
849 dimension of this algebra. The first `n` variables correspond to
850 the coordinates of an algebra element: when evaluated at the
851 coordinates of an algebra element with respect to a certain
852 basis, the result is a univariate polynomial (in the one
853 remaining variable ``t``), namely the characteristic polynomial
854 of that element.
855
856 SETUP::
857
858 sage: from mjo.eja.eja_algebra import JordanSpinEJA, TrivialEJA
859
860 EXAMPLES:
861
862 The characteristic polynomial in the spin algebra is given in
863 Alizadeh, Example 11.11::
864
865 sage: J = JordanSpinEJA(3)
866 sage: p = J.characteristic_polynomial_of(); p
867 X0^2 - X1^2 - X2^2 + (-2*t)*X0 + t^2
868 sage: xvec = J.one().to_vector()
869 sage: p(*xvec)
870 t^2 - 2*t + 1
871
872 By definition, the characteristic polynomial is a monic
873 degree-zero polynomial in a rank-zero algebra. Note that
874 Cayley-Hamilton is indeed satisfied since the polynomial
875 ``1`` evaluates to the identity element of the algebra on
876 any argument::
877
878 sage: J = TrivialEJA()
879 sage: J.characteristic_polynomial_of()
880 1
881
882 """
883 r = self.rank()
884 n = self.dimension()
885
886 # The list of coefficient polynomials a_0, a_1, a_2, ..., a_(r-1).
887 a = self._charpoly_coefficients()
888
889 # We go to a bit of trouble here to reorder the
890 # indeterminates, so that it's easier to evaluate the
891 # characteristic polynomial at x's coordinates and get back
892 # something in terms of t, which is what we want.
893 S = PolynomialRing(self.base_ring(),'t')
894 t = S.gen(0)
895 if r > 0:
896 R = a[0].parent()
897 S = PolynomialRing(S, R.variable_names())
898 t = S(t)
899
900 return (t**r + sum( a[k]*(t**k) for k in range(r) ))
901
902 def coordinate_polynomial_ring(self):
903 r"""
904 The multivariate polynomial ring in which this algebra's
905 :meth:`characteristic_polynomial_of` lives.
906
907 SETUP::
908
909 sage: from mjo.eja.eja_algebra import (HadamardEJA,
910 ....: RealSymmetricEJA)
911
912 EXAMPLES::
913
914 sage: J = HadamardEJA(2)
915 sage: J.coordinate_polynomial_ring()
916 Multivariate Polynomial Ring in X0, X1...
917 sage: J = RealSymmetricEJA(3,field=QQ,orthonormalize=False)
918 sage: J.coordinate_polynomial_ring()
919 Multivariate Polynomial Ring in X0, X1, X2, X3, X4, X5...
920
921 """
922 var_names = tuple( "X%d" % z for z in range(self.dimension()) )
923 return PolynomialRing(self.base_ring(), var_names)
924
925 def inner_product(self, x, y):
926 """
927 The inner product associated with this Euclidean Jordan algebra.
928
929 Defaults to the trace inner product, but can be overridden by
930 subclasses if they are sure that the necessary properties are
931 satisfied.
932
933 SETUP::
934
935 sage: from mjo.eja.eja_algebra import (random_eja,
936 ....: HadamardEJA,
937 ....: BilinearFormEJA)
938
939 EXAMPLES:
940
941 Our inner product is "associative," which means the following for
942 a symmetric bilinear form::
943
944 sage: J = random_eja()
945 sage: x,y,z = J.random_elements(3)
946 sage: (x*y).inner_product(z) == y.inner_product(x*z)
947 True
948
949 TESTS:
950
951 Ensure that this is the usual inner product for the algebras
952 over `R^n`::
953
954 sage: J = HadamardEJA.random_instance()
955 sage: x,y = J.random_elements(2)
956 sage: actual = x.inner_product(y)
957 sage: expected = x.to_vector().inner_product(y.to_vector())
958 sage: actual == expected
959 True
960
961 Ensure that this is one-half of the trace inner-product in a
962 BilinearFormEJA that isn't just the reals (when ``n`` isn't
963 one). This is in Faraut and Koranyi, and also my "On the
964 symmetry..." paper::
965
966 sage: J = BilinearFormEJA.random_instance()
967 sage: n = J.dimension()
968 sage: x = J.random_element()
969 sage: y = J.random_element()
970 sage: (n == 1) or (x.inner_product(y) == (x*y).trace()/2)
971 True
972 """
973 B = self._inner_product_matrix
974 return (B*x.to_vector()).inner_product(y.to_vector())
975
976
977 def is_trivial(self):
978 """
979 Return whether or not this algebra is trivial.
980
981 A trivial algebra contains only the zero element.
982
983 SETUP::
984
985 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
986 ....: TrivialEJA)
987
988 EXAMPLES::
989
990 sage: J = ComplexHermitianEJA(3)
991 sage: J.is_trivial()
992 False
993
994 ::
995
996 sage: J = TrivialEJA()
997 sage: J.is_trivial()
998 True
999
1000 """
1001 return self.dimension() == 0
1002
1003
1004 def multiplication_table(self):
1005 """
1006 Return a visual representation of this algebra's multiplication
1007 table (on basis elements).
1008
1009 SETUP::
1010
1011 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1012
1013 EXAMPLES::
1014
1015 sage: J = JordanSpinEJA(4)
1016 sage: J.multiplication_table()
1017 +----++----+----+----+----+
1018 | * || b0 | b1 | b2 | b3 |
1019 +====++====+====+====+====+
1020 | b0 || b0 | b1 | b2 | b3 |
1021 +----++----+----+----+----+
1022 | b1 || b1 | b0 | 0 | 0 |
1023 +----++----+----+----+----+
1024 | b2 || b2 | 0 | b0 | 0 |
1025 +----++----+----+----+----+
1026 | b3 || b3 | 0 | 0 | b0 |
1027 +----++----+----+----+----+
1028
1029 """
1030 n = self.dimension()
1031 # Prepend the header row.
1032 M = [["*"] + list(self.gens())]
1033
1034 # And to each subsequent row, prepend an entry that belongs to
1035 # the left-side "header column."
1036 M += [ [self.monomial(i)] + [ self.monomial(i)*self.monomial(j)
1037 for j in range(n) ]
1038 for i in range(n) ]
1039
1040 return table(M, header_row=True, header_column=True, frame=True)
1041
1042
1043 def matrix_basis(self):
1044 """
1045 Return an (often more natural) representation of this algebras
1046 basis as an ordered tuple of matrices.
1047
1048 Every finite-dimensional Euclidean Jordan Algebra is a, up to
1049 Jordan isomorphism, a direct sum of five simple
1050 algebras---four of which comprise Hermitian matrices. And the
1051 last type of algebra can of course be thought of as `n`-by-`1`
1052 column matrices (ambiguusly called column vectors) to avoid
1053 special cases. As a result, matrices (and column vectors) are
1054 a natural representation format for Euclidean Jordan algebra
1055 elements.
1056
1057 But, when we construct an algebra from a basis of matrices,
1058 those matrix representations are lost in favor of coordinate
1059 vectors *with respect to* that basis. We could eventually
1060 convert back if we tried hard enough, but having the original
1061 representations handy is valuable enough that we simply store
1062 them and return them from this method.
1063
1064 Why implement this for non-matrix algebras? Avoiding special
1065 cases for the :class:`BilinearFormEJA` pays with simplicity in
1066 its own right. But mainly, we would like to be able to assume
1067 that elements of a :class:`CartesianProductEJA` can be displayed
1068 nicely, without having to have special classes for direct sums
1069 one of whose components was a matrix algebra.
1070
1071 SETUP::
1072
1073 sage: from mjo.eja.eja_algebra import (JordanSpinEJA,
1074 ....: RealSymmetricEJA)
1075
1076 EXAMPLES::
1077
1078 sage: J = RealSymmetricEJA(2)
1079 sage: J.basis()
1080 Finite family {0: b0, 1: b1, 2: b2}
1081 sage: J.matrix_basis()
1082 (
1083 [1 0] [ 0 0.7071067811865475?] [0 0]
1084 [0 0], [0.7071067811865475? 0], [0 1]
1085 )
1086
1087 ::
1088
1089 sage: J = JordanSpinEJA(2)
1090 sage: J.basis()
1091 Finite family {0: b0, 1: b1}
1092 sage: J.matrix_basis()
1093 (
1094 [1] [0]
1095 [0], [1]
1096 )
1097 """
1098 return self._matrix_basis
1099
1100
1101 def matrix_space(self):
1102 """
1103 Return the matrix space in which this algebra's elements live, if
1104 we think of them as matrices (including column vectors of the
1105 appropriate size).
1106
1107 "By default" this will be an `n`-by-`1` column-matrix space,
1108 except when the algebra is trivial. There it's `n`-by-`n`
1109 (where `n` is zero), to ensure that two elements of the matrix
1110 space (empty matrices) can be multiplied. For algebras of
1111 matrices, this returns the space in which their
1112 real embeddings live.
1113
1114 SETUP::
1115
1116 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
1117 ....: JordanSpinEJA,
1118 ....: QuaternionHermitianEJA,
1119 ....: TrivialEJA)
1120
1121 EXAMPLES:
1122
1123 By default, the matrix representation is just a column-matrix
1124 equivalent to the vector representation::
1125
1126 sage: J = JordanSpinEJA(3)
1127 sage: J.matrix_space()
1128 Full MatrixSpace of 3 by 1 dense matrices over Algebraic
1129 Real Field
1130
1131 The matrix representation in the trivial algebra is
1132 zero-by-zero instead of the usual `n`-by-one::
1133
1134 sage: J = TrivialEJA()
1135 sage: J.matrix_space()
1136 Full MatrixSpace of 0 by 0 dense matrices over Algebraic
1137 Real Field
1138
1139 The matrix space for complex/quaternion Hermitian matrix EJA
1140 is the space in which their real-embeddings live, not the
1141 original complex/quaternion matrix space::
1142
1143 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
1144 sage: J.matrix_space()
1145 Module of 2 by 2 matrices with entries in Algebraic Field over
1146 the scalar ring Rational Field
1147 sage: J = QuaternionHermitianEJA(1,field=QQ,orthonormalize=False)
1148 sage: J.matrix_space()
1149 Module of 1 by 1 matrices with entries in Quaternion
1150 Algebra (-1, -1) with base ring Rational Field over
1151 the scalar ring Rational Field
1152
1153 """
1154 return self._matrix_space
1155
1156
1157 @cached_method
1158 def one(self):
1159 """
1160 Return the unit element of this algebra.
1161
1162 SETUP::
1163
1164 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1165 ....: random_eja)
1166
1167 EXAMPLES:
1168
1169 We can compute unit element in the Hadamard EJA::
1170
1171 sage: J = HadamardEJA(5)
1172 sage: J.one()
1173 b0 + b1 + b2 + b3 + b4
1174
1175 The unit element in the Hadamard EJA is inherited in the
1176 subalgebras generated by its elements::
1177
1178 sage: J = HadamardEJA(5)
1179 sage: J.one()
1180 b0 + b1 + b2 + b3 + b4
1181 sage: x = sum(J.gens())
1182 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1183 sage: A.one()
1184 c0
1185 sage: A.one().superalgebra_element()
1186 b0 + b1 + b2 + b3 + b4
1187
1188 TESTS:
1189
1190 The identity element acts like the identity, regardless of
1191 whether or not we orthonormalize::
1192
1193 sage: J = random_eja()
1194 sage: x = J.random_element()
1195 sage: J.one()*x == x and x*J.one() == x
1196 True
1197 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1198 sage: y = A.random_element()
1199 sage: A.one()*y == y and y*A.one() == y
1200 True
1201
1202 ::
1203
1204 sage: J = random_eja(field=QQ, orthonormalize=False)
1205 sage: x = J.random_element()
1206 sage: J.one()*x == x and x*J.one() == x
1207 True
1208 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1209 sage: y = A.random_element()
1210 sage: A.one()*y == y and y*A.one() == y
1211 True
1212
1213 The matrix of the unit element's operator is the identity,
1214 regardless of the base field and whether or not we
1215 orthonormalize::
1216
1217 sage: J = random_eja()
1218 sage: actual = J.one().operator().matrix()
1219 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1220 sage: actual == expected
1221 True
1222 sage: x = J.random_element()
1223 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1224 sage: actual = A.one().operator().matrix()
1225 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1226 sage: actual == expected
1227 True
1228
1229 ::
1230
1231 sage: J = random_eja(field=QQ, orthonormalize=False)
1232 sage: actual = J.one().operator().matrix()
1233 sage: expected = matrix.identity(J.base_ring(), J.dimension())
1234 sage: actual == expected
1235 True
1236 sage: x = J.random_element()
1237 sage: A = x.subalgebra_generated_by(orthonormalize=False)
1238 sage: actual = A.one().operator().matrix()
1239 sage: expected = matrix.identity(A.base_ring(), A.dimension())
1240 sage: actual == expected
1241 True
1242
1243 Ensure that the cached unit element (often precomputed by
1244 hand) agrees with the computed one::
1245
1246 sage: J = random_eja()
1247 sage: cached = J.one()
1248 sage: J.one.clear_cache()
1249 sage: J.one() == cached
1250 True
1251
1252 ::
1253
1254 sage: J = random_eja(field=QQ, orthonormalize=False)
1255 sage: cached = J.one()
1256 sage: J.one.clear_cache()
1257 sage: J.one() == cached
1258 True
1259
1260 """
1261 # We can brute-force compute the matrices of the operators
1262 # that correspond to the basis elements of this algebra.
1263 # If some linear combination of those basis elements is the
1264 # algebra identity, then the same linear combination of
1265 # their matrices has to be the identity matrix.
1266 #
1267 # Of course, matrices aren't vectors in sage, so we have to
1268 # appeal to the "long vectors" isometry.
1269
1270 V = VectorSpace(self.base_ring(), self.dimension()**2)
1271 oper_vecs = [ V(g.operator().matrix().list()) for g in self.gens() ]
1272
1273 # Now we use basic linear algebra to find the coefficients,
1274 # of the matrices-as-vectors-linear-combination, which should
1275 # work for the original algebra basis too.
1276 A = matrix(self.base_ring(), oper_vecs)
1277
1278 # We used the isometry on the left-hand side already, but we
1279 # still need to do it for the right-hand side. Recall that we
1280 # wanted something that summed to the identity matrix.
1281 b = V( matrix.identity(self.base_ring(), self.dimension()).list() )
1282
1283 # Now if there's an identity element in the algebra, this
1284 # should work. We solve on the left to avoid having to
1285 # transpose the matrix "A".
1286 return self.from_vector(A.solve_left(b))
1287
1288
1289 def peirce_decomposition(self, c):
1290 """
1291 The Peirce decomposition of this algebra relative to the
1292 idempotent ``c``.
1293
1294 In the future, this can be extended to a complete system of
1295 orthogonal idempotents.
1296
1297 INPUT:
1298
1299 - ``c`` -- an idempotent of this algebra.
1300
1301 OUTPUT:
1302
1303 A triple (J0, J5, J1) containing two subalgebras and one subspace
1304 of this algebra,
1305
1306 - ``J0`` -- the algebra on the eigenspace of ``c.operator()``
1307 corresponding to the eigenvalue zero.
1308
1309 - ``J5`` -- the eigenspace (NOT a subalgebra) of ``c.operator()``
1310 corresponding to the eigenvalue one-half.
1311
1312 - ``J1`` -- the algebra on the eigenspace of ``c.operator()``
1313 corresponding to the eigenvalue one.
1314
1315 These are the only possible eigenspaces for that operator, and this
1316 algebra is a direct sum of them. The spaces ``J0`` and ``J1`` are
1317 orthogonal, and are subalgebras of this algebra with the appropriate
1318 restrictions.
1319
1320 SETUP::
1321
1322 sage: from mjo.eja.eja_algebra import random_eja, RealSymmetricEJA
1323
1324 EXAMPLES:
1325
1326 The canonical example comes from the symmetric matrices, which
1327 decompose into diagonal and off-diagonal parts::
1328
1329 sage: J = RealSymmetricEJA(3)
1330 sage: C = matrix(QQ, [ [1,0,0],
1331 ....: [0,1,0],
1332 ....: [0,0,0] ])
1333 sage: c = J(C)
1334 sage: J0,J5,J1 = J.peirce_decomposition(c)
1335 sage: J0
1336 Euclidean Jordan algebra of dimension 1...
1337 sage: J5
1338 Vector space of degree 6 and dimension 2...
1339 sage: J1
1340 Euclidean Jordan algebra of dimension 3...
1341 sage: J0.one().to_matrix()
1342 [0 0 0]
1343 [0 0 0]
1344 [0 0 1]
1345 sage: orig_df = AA.options.display_format
1346 sage: AA.options.display_format = 'radical'
1347 sage: J.from_vector(J5.basis()[0]).to_matrix()
1348 [ 0 0 1/2*sqrt(2)]
1349 [ 0 0 0]
1350 [1/2*sqrt(2) 0 0]
1351 sage: J.from_vector(J5.basis()[1]).to_matrix()
1352 [ 0 0 0]
1353 [ 0 0 1/2*sqrt(2)]
1354 [ 0 1/2*sqrt(2) 0]
1355 sage: AA.options.display_format = orig_df
1356 sage: J1.one().to_matrix()
1357 [1 0 0]
1358 [0 1 0]
1359 [0 0 0]
1360
1361 TESTS:
1362
1363 Every algebra decomposes trivially with respect to its identity
1364 element::
1365
1366 sage: J = random_eja()
1367 sage: J0,J5,J1 = J.peirce_decomposition(J.one())
1368 sage: J0.dimension() == 0 and J5.dimension() == 0
1369 True
1370 sage: J1.superalgebra() == J and J1.dimension() == J.dimension()
1371 True
1372
1373 The decomposition is into eigenspaces, and its components are
1374 therefore necessarily orthogonal. Moreover, the identity
1375 elements in the two subalgebras are the projections onto their
1376 respective subspaces of the superalgebra's identity element::
1377
1378 sage: J = random_eja()
1379 sage: x = J.random_element()
1380 sage: if not J.is_trivial():
1381 ....: while x.is_nilpotent():
1382 ....: x = J.random_element()
1383 sage: c = x.subalgebra_idempotent()
1384 sage: J0,J5,J1 = J.peirce_decomposition(c)
1385 sage: ipsum = 0
1386 sage: for (w,y,z) in zip(J0.basis(), J5.basis(), J1.basis()):
1387 ....: w = w.superalgebra_element()
1388 ....: y = J.from_vector(y)
1389 ....: z = z.superalgebra_element()
1390 ....: ipsum += w.inner_product(y).abs()
1391 ....: ipsum += w.inner_product(z).abs()
1392 ....: ipsum += y.inner_product(z).abs()
1393 sage: ipsum
1394 0
1395 sage: J1(c) == J1.one()
1396 True
1397 sage: J0(J.one() - c) == J0.one()
1398 True
1399
1400 """
1401 if not c.is_idempotent():
1402 raise ValueError("element is not idempotent: %s" % c)
1403
1404 # Default these to what they should be if they turn out to be
1405 # trivial, because eigenspaces_left() won't return eigenvalues
1406 # corresponding to trivial spaces (e.g. it returns only the
1407 # eigenspace corresponding to lambda=1 if you take the
1408 # decomposition relative to the identity element).
1409 trivial = self.subalgebra((), check_axioms=False)
1410 J0 = trivial # eigenvalue zero
1411 J5 = VectorSpace(self.base_ring(), 0) # eigenvalue one-half
1412 J1 = trivial # eigenvalue one
1413
1414 for (eigval, eigspace) in c.operator().matrix().right_eigenspaces():
1415 if eigval == ~(self.base_ring()(2)):
1416 J5 = eigspace
1417 else:
1418 gens = tuple( self.from_vector(b) for b in eigspace.basis() )
1419 subalg = self.subalgebra(gens, check_axioms=False)
1420 if eigval == 0:
1421 J0 = subalg
1422 elif eigval == 1:
1423 J1 = subalg
1424 else:
1425 raise ValueError("unexpected eigenvalue: %s" % eigval)
1426
1427 return (J0, J5, J1)
1428
1429
1430 def random_element(self, thorough=False):
1431 r"""
1432 Return a random element of this algebra.
1433
1434 Our algebra superclass method only returns a linear
1435 combination of at most two basis elements. We instead
1436 want the vector space "random element" method that
1437 returns a more diverse selection.
1438
1439 INPUT:
1440
1441 - ``thorough`` -- (boolean; default False) whether or not we
1442 should generate irrational coefficients for the random
1443 element when our base ring is irrational; this slows the
1444 algebra operations to a crawl, but any truly random method
1445 should include them
1446
1447 """
1448 # For a general base ring... maybe we can trust this to do the
1449 # right thing? Unlikely, but.
1450 V = self.vector_space()
1451 if self.base_ring() is AA and not thorough:
1452 # Now that AA generates actually random random elements
1453 # (post Trac 30875), we only need to de-thorough the
1454 # randomness when asked to.
1455 V = V.change_ring(QQ)
1456
1457 v = V.random_element()
1458 return self.from_vector(V.coordinate_vector(v))
1459
1460 def random_elements(self, count, thorough=False):
1461 """
1462 Return ``count`` random elements as a tuple.
1463
1464 INPUT:
1465
1466 - ``thorough`` -- (boolean; default False) whether or not we
1467 should generate irrational coefficients for the random
1468 elements when our base ring is irrational; this slows the
1469 algebra operations to a crawl, but any truly random method
1470 should include them
1471
1472 SETUP::
1473
1474 sage: from mjo.eja.eja_algebra import JordanSpinEJA
1475
1476 EXAMPLES::
1477
1478 sage: J = JordanSpinEJA(3)
1479 sage: x,y,z = J.random_elements(3)
1480 sage: all( [ x in J, y in J, z in J ])
1481 True
1482 sage: len( J.random_elements(10) ) == 10
1483 True
1484
1485 """
1486 return tuple( self.random_element(thorough)
1487 for idx in range(count) )
1488
1489
1490 def operator_polynomial_matrix(self):
1491 r"""
1492 Return the matrix of polynomials (over this algebra's
1493 :meth:`coordinate_polynomial_ring`) that, when evaluated at
1494 the basis coordinates of an element `x`, produces the basis
1495 representation of `L_{x}`.
1496
1497 SETUP::
1498
1499 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1500 ....: JordanSpinEJA)
1501
1502 EXAMPLES::
1503
1504 sage: J = HadamardEJA(4)
1505 sage: L_x = J.operator_polynomial_matrix()
1506 sage: L_x
1507 [X0 0 0 0]
1508 [ 0 X1 0 0]
1509 [ 0 0 X2 0]
1510 [ 0 0 0 X3]
1511 sage: x = J.one()
1512 sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector())
1513 sage: L_x.subs(dict(d))
1514 [1 0 0 0]
1515 [0 1 0 0]
1516 [0 0 1 0]
1517 [0 0 0 1]
1518
1519 ::
1520
1521 sage: J = JordanSpinEJA(4)
1522 sage: L_x = J.operator_polynomial_matrix()
1523 sage: L_x
1524 [X0 X1 X2 X3]
1525 [X1 X0 0 0]
1526 [X2 0 X0 0]
1527 [X3 0 0 X0]
1528 sage: x = J.one()
1529 sage: d = zip(J.coordinate_polynomial_ring().gens(), x.to_vector())
1530 sage: L_x.subs(dict(d))
1531 [1 0 0 0]
1532 [0 1 0 0]
1533 [0 0 1 0]
1534 [0 0 0 1]
1535
1536 """
1537 R = self.coordinate_polynomial_ring()
1538
1539 def L_x_i_j(i,j):
1540 # From a result in my book, these are the entries of the
1541 # basis representation of L_x.
1542 return sum( v*self.monomial(k).operator().matrix()[i,j]
1543 for (k,v) in enumerate(R.gens()) )
1544
1545 n = self.dimension()
1546 return matrix(R, n, n, L_x_i_j)
1547
1548 @cached_method
1549 def _charpoly_coefficients(self):
1550 r"""
1551 The `r` polynomial coefficients of the "characteristic polynomial
1552 of" function.
1553
1554 SETUP::
1555
1556 sage: from mjo.eja.eja_algebra import random_eja
1557
1558 TESTS:
1559
1560 The theory shows that these are all homogeneous polynomials of
1561 a known degree::
1562
1563 sage: J = random_eja()
1564 sage: all(p.is_homogeneous() for p in J._charpoly_coefficients())
1565 True
1566
1567 """
1568 n = self.dimension()
1569 R = self.coordinate_polynomial_ring()
1570 F = R.fraction_field()
1571
1572 L_x = self.operator_polynomial_matrix()
1573
1574 r = None
1575 if self.rank.is_in_cache():
1576 r = self.rank()
1577 # There's no need to pad the system with redundant
1578 # columns if we *know* they'll be redundant.
1579 n = r
1580
1581 # Compute an extra power in case the rank is equal to
1582 # the dimension (otherwise, we would stop at x^(r-1)).
1583 x_powers = [ (L_x**k)*self.one().to_vector()
1584 for k in range(n+1) ]
1585 A = matrix.column(F, x_powers[:n])
1586 AE = A.extended_echelon_form()
1587 E = AE[:,n:]
1588 A_rref = AE[:,:n]
1589 if r is None:
1590 r = A_rref.rank()
1591 b = x_powers[r]
1592
1593 # The theory says that only the first "r" coefficients are
1594 # nonzero, and they actually live in the original polynomial
1595 # ring and not the fraction field. We negate them because in
1596 # the actual characteristic polynomial, they get moved to the
1597 # other side where x^r lives. We don't bother to trim A_rref
1598 # down to a square matrix and solve the resulting system,
1599 # because the upper-left r-by-r portion of A_rref is
1600 # guaranteed to be the identity matrix, so e.g.
1601 #
1602 # A_rref.solve_right(Y)
1603 #
1604 # would just be returning Y.
1605 return (-E*b)[:r].change_ring(R)
1606
1607 @cached_method
1608 def rank(self):
1609 r"""
1610 Return the rank of this EJA.
1611
1612 This is a cached method because we know the rank a priori for
1613 all of the algebras we can construct. Thus we can avoid the
1614 expensive ``_charpoly_coefficients()`` call unless we truly
1615 need to compute the whole characteristic polynomial.
1616
1617 SETUP::
1618
1619 sage: from mjo.eja.eja_algebra import (HadamardEJA,
1620 ....: JordanSpinEJA,
1621 ....: RealSymmetricEJA,
1622 ....: ComplexHermitianEJA,
1623 ....: QuaternionHermitianEJA,
1624 ....: random_eja)
1625
1626 EXAMPLES:
1627
1628 The rank of the Jordan spin algebra is always two::
1629
1630 sage: JordanSpinEJA(2).rank()
1631 2
1632 sage: JordanSpinEJA(3).rank()
1633 2
1634 sage: JordanSpinEJA(4).rank()
1635 2
1636
1637 The rank of the `n`-by-`n` Hermitian real, complex, or
1638 quaternion matrices is `n`::
1639
1640 sage: RealSymmetricEJA(4).rank()
1641 4
1642 sage: ComplexHermitianEJA(3).rank()
1643 3
1644 sage: QuaternionHermitianEJA(2).rank()
1645 2
1646
1647 TESTS:
1648
1649 Ensure that every EJA that we know how to construct has a
1650 positive integer rank, unless the algebra is trivial in
1651 which case its rank will be zero::
1652
1653 sage: J = random_eja()
1654 sage: r = J.rank()
1655 sage: r in ZZ
1656 True
1657 sage: r > 0 or (r == 0 and J.is_trivial())
1658 True
1659
1660 Ensure that computing the rank actually works, since the ranks
1661 of all simple algebras are known and will be cached by default::
1662
1663 sage: J = random_eja() # long time
1664 sage: cached = J.rank() # long time
1665 sage: J.rank.clear_cache() # long time
1666 sage: J.rank() == cached # long time
1667 True
1668
1669 """
1670 return len(self._charpoly_coefficients())
1671
1672
1673 def subalgebra(self, basis, **kwargs):
1674 r"""
1675 Create a subalgebra of this algebra from the given basis.
1676 """
1677 from mjo.eja.eja_subalgebra import FiniteDimensionalEJASubalgebra
1678 return FiniteDimensionalEJASubalgebra(self, basis, **kwargs)
1679
1680
1681 def vector_space(self):
1682 """
1683 Return the vector space that underlies this algebra.
1684
1685 SETUP::
1686
1687 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
1688
1689 EXAMPLES::
1690
1691 sage: J = RealSymmetricEJA(2)
1692 sage: J.vector_space()
1693 Vector space of dimension 3 over...
1694
1695 """
1696 return self.zero().to_vector().parent().ambient_vector_space()
1697
1698
1699
1700 class RationalBasisEJA(FiniteDimensionalEJA):
1701 r"""
1702 Algebras whose supplied basis elements have all rational entries.
1703
1704 SETUP::
1705
1706 sage: from mjo.eja.eja_algebra import BilinearFormEJA
1707
1708 EXAMPLES:
1709
1710 The supplied basis is orthonormalized by default::
1711
1712 sage: B = matrix(QQ, [[1, 0, 0], [0, 25, -32], [0, -32, 41]])
1713 sage: J = BilinearFormEJA(B)
1714 sage: J.matrix_basis()
1715 (
1716 [1] [ 0] [ 0]
1717 [0] [1/5] [32/5]
1718 [0], [ 0], [ 5]
1719 )
1720
1721 """
1722 def __init__(self,
1723 basis,
1724 jordan_product,
1725 inner_product,
1726 field=AA,
1727 check_field=True,
1728 **kwargs):
1729
1730 if check_field:
1731 # Abuse the check_field parameter to check that the entries of
1732 # out basis (in ambient coordinates) are in the field QQ.
1733 # Use _all2list to get the vector coordinates of octonion
1734 # entries and not the octonions themselves (which are not
1735 # rational).
1736 if not all( all(b_i in QQ for b_i in _all2list(b))
1737 for b in basis ):
1738 raise TypeError("basis not rational")
1739
1740 super().__init__(basis,
1741 jordan_product,
1742 inner_product,
1743 field=field,
1744 check_field=check_field,
1745 **kwargs)
1746
1747 self._rational_algebra = None
1748 if field is not QQ:
1749 # There's no point in constructing the extra algebra if this
1750 # one is already rational.
1751 #
1752 # Note: the same Jordan and inner-products work here,
1753 # because they are necessarily defined with respect to
1754 # ambient coordinates and not any particular basis.
1755 self._rational_algebra = FiniteDimensionalEJA(
1756 basis,
1757 jordan_product,
1758 inner_product,
1759 field=QQ,
1760 matrix_space=self.matrix_space(),
1761 associative=self.is_associative(),
1762 orthonormalize=False,
1763 check_field=False,
1764 check_axioms=False)
1765
1766 def rational_algebra(self):
1767 # Using None as a flag here (rather than just assigning "self"
1768 # to self._rational_algebra by default) feels a little bit
1769 # more sane to me in a garbage-collected environment.
1770 if self._rational_algebra is None:
1771 return self
1772 else:
1773 return self._rational_algebra
1774
1775 @cached_method
1776 def _charpoly_coefficients(self):
1777 r"""
1778 SETUP::
1779
1780 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
1781 ....: JordanSpinEJA)
1782
1783 EXAMPLES:
1784
1785 The base ring of the resulting polynomial coefficients is what
1786 it should be, and not the rationals (unless the algebra was
1787 already over the rationals)::
1788
1789 sage: J = JordanSpinEJA(3)
1790 sage: J._charpoly_coefficients()
1791 (X0^2 - X1^2 - X2^2, -2*X0)
1792 sage: a0 = J._charpoly_coefficients()[0]
1793 sage: J.base_ring()
1794 Algebraic Real Field
1795 sage: a0.base_ring()
1796 Algebraic Real Field
1797
1798 """
1799 if self.rational_algebra() is self:
1800 # Bypass the hijinks if they won't benefit us.
1801 return super()._charpoly_coefficients()
1802
1803 # Do the computation over the rationals.
1804 a = ( a_i.change_ring(self.base_ring())
1805 for a_i in self.rational_algebra()._charpoly_coefficients() )
1806
1807 # Convert our coordinate variables into deorthonormalized ones
1808 # and substitute them into the deorthonormalized charpoly
1809 # coefficients.
1810 R = self.coordinate_polynomial_ring()
1811 from sage.modules.free_module_element import vector
1812 X = vector(R, R.gens())
1813 BX = self._deortho_matrix*X
1814
1815 subs_dict = { X[i]: BX[i] for i in range(len(X)) }
1816 return tuple( a_i.subs(subs_dict) for a_i in a )
1817
1818 class ConcreteEJA(FiniteDimensionalEJA):
1819 r"""
1820 A class for the Euclidean Jordan algebras that we know by name.
1821
1822 These are the Jordan algebras whose basis, multiplication table,
1823 rank, and so on are known a priori. More to the point, they are
1824 the Euclidean Jordan algebras for which we are able to conjure up
1825 a "random instance."
1826
1827 SETUP::
1828
1829 sage: from mjo.eja.eja_algebra import ConcreteEJA
1830
1831 TESTS:
1832
1833 Our basis is normalized with respect to the algebra's inner
1834 product, unless we specify otherwise::
1835
1836 sage: J = ConcreteEJA.random_instance()
1837 sage: all( b.norm() == 1 for b in J.gens() )
1838 True
1839
1840 Since our basis is orthonormal with respect to the algebra's inner
1841 product, and since we know that this algebra is an EJA, any
1842 left-multiplication operator's matrix will be symmetric because
1843 natural->EJA basis representation is an isometry and within the
1844 EJA the operator is self-adjoint by the Jordan axiom::
1845
1846 sage: J = ConcreteEJA.random_instance()
1847 sage: x = J.random_element()
1848 sage: x.operator().is_self_adjoint()
1849 True
1850 """
1851
1852 @staticmethod
1853 def _max_random_instance_dimension():
1854 r"""
1855 The maximum dimension of any random instance. Ten dimensions seems
1856 to be about the point where everything takes a turn for the
1857 worse. And dimension ten (but not nine) allows the 4-by-4 real
1858 Hermitian matrices, the 2-by-2 quaternion Hermitian matrices,
1859 and the 2-by-2 octonion Hermitian matrices.
1860 """
1861 return 10
1862
1863 @staticmethod
1864 def _max_random_instance_size(max_dimension):
1865 """
1866 Return an integer "size" that is an upper bound on the size of
1867 this algebra when it is used in a random test case. This size
1868 (which can be passed to the algebra's constructor) is itself
1869 based on the ``max_dimension`` parameter.
1870
1871 This method must be implemented in each subclass.
1872 """
1873 raise NotImplementedError
1874
1875 @classmethod
1876 def random_instance(cls, max_dimension=None, *args, **kwargs):
1877 """
1878 Return a random instance of this type of algebra whose dimension
1879 is less than or equal to the lesser of ``max_dimension`` and
1880 the value returned by ``_max_random_instance_dimension()``. If
1881 the dimension bound is omitted, then only the
1882 ``_max_random_instance_dimension()`` is used as a bound.
1883
1884 This method should be implemented in each subclass.
1885
1886 SETUP::
1887
1888 sage: from mjo.eja.eja_algebra import ConcreteEJA
1889
1890 TESTS:
1891
1892 Both the class bound and the ``max_dimension`` argument are upper
1893 bounds on the dimension of the algebra returned::
1894
1895 sage: from sage.misc.prandom import choice
1896 sage: eja_class = choice(ConcreteEJA.__subclasses__())
1897 sage: class_max_d = eja_class._max_random_instance_dimension()
1898 sage: J = eja_class.random_instance(max_dimension=20,
1899 ....: field=QQ,
1900 ....: orthonormalize=False)
1901 sage: J.dimension() <= class_max_d
1902 True
1903 sage: J = eja_class.random_instance(max_dimension=2,
1904 ....: field=QQ,
1905 ....: orthonormalize=False)
1906 sage: J.dimension() <= 2
1907 True
1908
1909 """
1910 from sage.misc.prandom import choice
1911 eja_class = choice(cls.__subclasses__())
1912
1913 # These all bubble up to the RationalBasisEJA superclass
1914 # constructor, so any (kw)args valid there are also valid
1915 # here.
1916 return eja_class.random_instance(max_dimension, *args, **kwargs)
1917
1918
1919 class HermitianMatrixEJA(FiniteDimensionalEJA):
1920 @staticmethod
1921 def _denormalized_basis(A):
1922 """
1923 Returns a basis for the given Hermitian matrix space.
1924
1925 Why do we embed these? Basically, because all of numerical linear
1926 algebra assumes that you're working with vectors consisting of `n`
1927 entries from a field and scalars from the same field. There's no way
1928 to tell SageMath that (for example) the vectors contain complex
1929 numbers, while the scalar field is real.
1930
1931 SETUP::
1932
1933 sage: from mjo.hurwitz import (ComplexMatrixAlgebra,
1934 ....: QuaternionMatrixAlgebra,
1935 ....: OctonionMatrixAlgebra)
1936 sage: from mjo.eja.eja_algebra import HermitianMatrixEJA
1937
1938 TESTS::
1939
1940 sage: n = ZZ.random_element(1,5)
1941 sage: A = MatrixSpace(QQ, n)
1942 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1943 sage: all( M.is_hermitian() for M in B)
1944 True
1945
1946 ::
1947
1948 sage: n = ZZ.random_element(1,5)
1949 sage: A = ComplexMatrixAlgebra(n, scalars=QQ)
1950 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1951 sage: all( M.is_hermitian() for M in B)
1952 True
1953
1954 ::
1955
1956 sage: n = ZZ.random_element(1,5)
1957 sage: A = QuaternionMatrixAlgebra(n, scalars=QQ)
1958 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1959 sage: all( M.is_hermitian() for M in B )
1960 True
1961
1962 ::
1963
1964 sage: n = ZZ.random_element(1,5)
1965 sage: A = OctonionMatrixAlgebra(n, scalars=QQ)
1966 sage: B = HermitianMatrixEJA._denormalized_basis(A)
1967 sage: all( M.is_hermitian() for M in B )
1968 True
1969
1970 """
1971 # These work for real MatrixSpace, whose monomials only have
1972 # two coordinates (because the last one would always be "1").
1973 es = A.base_ring().gens()
1974 gen = lambda A,m: A.monomial(m[:2])
1975
1976 if hasattr(A, 'entry_algebra_gens'):
1977 # We've got a MatrixAlgebra, and its monomials will have
1978 # three coordinates.
1979 es = A.entry_algebra_gens()
1980 gen = lambda A,m: A.monomial(m)
1981
1982 basis = []
1983 for i in range(A.nrows()):
1984 for j in range(i+1):
1985 if i == j:
1986 E_ii = gen(A, (i,j,es[0]))
1987 basis.append(E_ii)
1988 else:
1989 for e in es:
1990 E_ij = gen(A, (i,j,e))
1991 E_ij += E_ij.conjugate_transpose()
1992 basis.append(E_ij)
1993
1994 return tuple( basis )
1995
1996 @staticmethod
1997 def jordan_product(X,Y):
1998 return (X*Y + Y*X)/2
1999
2000 @staticmethod
2001 def trace_inner_product(X,Y):
2002 r"""
2003 A trace inner-product for matrices that aren't embedded in the
2004 reals. It takes MATRICES as arguments, not EJA elements.
2005
2006 SETUP::
2007
2008 sage: from mjo.eja.eja_algebra import (RealSymmetricEJA,
2009 ....: ComplexHermitianEJA,
2010 ....: QuaternionHermitianEJA,
2011 ....: OctonionHermitianEJA)
2012
2013 EXAMPLES::
2014
2015 sage: J = RealSymmetricEJA(2,field=QQ,orthonormalize=False)
2016 sage: I = J.one().to_matrix()
2017 sage: J.trace_inner_product(I, -I)
2018 -2
2019
2020 ::
2021
2022 sage: J = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
2023 sage: I = J.one().to_matrix()
2024 sage: J.trace_inner_product(I, -I)
2025 -2
2026
2027 ::
2028
2029 sage: J = QuaternionHermitianEJA(2,field=QQ,orthonormalize=False)
2030 sage: I = J.one().to_matrix()
2031 sage: J.trace_inner_product(I, -I)
2032 -2
2033
2034 ::
2035
2036 sage: J = OctonionHermitianEJA(2,field=QQ,orthonormalize=False)
2037 sage: I = J.one().to_matrix()
2038 sage: J.trace_inner_product(I, -I)
2039 -2
2040
2041 """
2042 tr = (X*Y).trace()
2043 if hasattr(tr, 'coefficient'):
2044 # Works for octonions, and has to come first because they
2045 # also have a "real()" method that doesn't return an
2046 # element of the scalar ring.
2047 return tr.coefficient(0)
2048 elif hasattr(tr, 'coefficient_tuple'):
2049 # Works for quaternions.
2050 return tr.coefficient_tuple()[0]
2051
2052 # Works for real and complex numbers.
2053 return tr.real()
2054
2055
2056 def __init__(self, matrix_space, **kwargs):
2057 # We know this is a valid EJA, but will double-check
2058 # if the user passes check_axioms=True.
2059 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2060
2061 super().__init__(self._denormalized_basis(matrix_space),
2062 self.jordan_product,
2063 self.trace_inner_product,
2064 field=matrix_space.base_ring(),
2065 matrix_space=matrix_space,
2066 **kwargs)
2067
2068 self.rank.set_cache(matrix_space.nrows())
2069 self.one.set_cache( self(matrix_space.one()) )
2070
2071 class RealSymmetricEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2072 """
2073 The rank-n simple EJA consisting of real symmetric n-by-n
2074 matrices, the usual symmetric Jordan product, and the trace inner
2075 product. It has dimension `(n^2 + n)/2` over the reals.
2076
2077 SETUP::
2078
2079 sage: from mjo.eja.eja_algebra import RealSymmetricEJA
2080
2081 EXAMPLES::
2082
2083 sage: J = RealSymmetricEJA(2)
2084 sage: b0, b1, b2 = J.gens()
2085 sage: b0*b0
2086 b0
2087 sage: b1*b1
2088 1/2*b0 + 1/2*b2
2089 sage: b2*b2
2090 b2
2091
2092 In theory, our "field" can be any subfield of the reals::
2093
2094 sage: RealSymmetricEJA(2, field=RDF, check_axioms=True)
2095 Euclidean Jordan algebra of dimension 3 over Real Double Field
2096 sage: RealSymmetricEJA(2, field=RR, check_axioms=True)
2097 Euclidean Jordan algebra of dimension 3 over Real Field with
2098 53 bits of precision
2099
2100 TESTS:
2101
2102 The dimension of this algebra is `(n^2 + n) / 2`::
2103
2104 sage: d = RealSymmetricEJA._max_random_instance_dimension()
2105 sage: n = RealSymmetricEJA._max_random_instance_size(d)
2106 sage: J = RealSymmetricEJA(n)
2107 sage: J.dimension() == (n^2 + n)/2
2108 True
2109
2110 The Jordan multiplication is what we think it is::
2111
2112 sage: J = RealSymmetricEJA.random_instance()
2113 sage: x,y = J.random_elements(2)
2114 sage: actual = (x*y).to_matrix()
2115 sage: X = x.to_matrix()
2116 sage: Y = y.to_matrix()
2117 sage: expected = (X*Y + Y*X)/2
2118 sage: actual == expected
2119 True
2120 sage: J(expected) == x*y
2121 True
2122
2123 We can change the generator prefix::
2124
2125 sage: RealSymmetricEJA(3, prefix='q').gens()
2126 (q0, q1, q2, q3, q4, q5)
2127
2128 We can construct the (trivial) algebra of rank zero::
2129
2130 sage: RealSymmetricEJA(0)
2131 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2132
2133 """
2134 @staticmethod
2135 def _max_random_instance_size(max_dimension):
2136 # Obtained by solving d = (n^2 + n)/2.
2137 # The ZZ-int-ZZ thing is just "floor."
2138 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/2 - 1/2))
2139
2140 @classmethod
2141 def random_instance(cls, max_dimension=None, *args, **kwargs):
2142 """
2143 Return a random instance of this type of algebra.
2144 """
2145 class_max_d = cls._max_random_instance_dimension()
2146 if (max_dimension is None or max_dimension > class_max_d):
2147 max_dimension = class_max_d
2148 max_size = cls._max_random_instance_size(max_dimension)
2149 n = ZZ.random_element(max_size + 1)
2150 return cls(n, **kwargs)
2151
2152 def __init__(self, n, field=AA, **kwargs):
2153 A = MatrixSpace(field, n)
2154 super().__init__(A, **kwargs)
2155
2156 from mjo.eja.eja_cache import real_symmetric_eja_coeffs
2157 a = real_symmetric_eja_coeffs(self)
2158 if a is not None:
2159 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2160
2161
2162
2163 class ComplexHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2164 """
2165 The rank-n simple EJA consisting of complex Hermitian n-by-n
2166 matrices over the real numbers, the usual symmetric Jordan product,
2167 and the real-part-of-trace inner product. It has dimension `n^2` over
2168 the reals.
2169
2170 SETUP::
2171
2172 sage: from mjo.eja.eja_algebra import ComplexHermitianEJA
2173
2174 EXAMPLES:
2175
2176 In theory, our "field" can be any subfield of the reals, but we
2177 can't use inexact real fields at the moment because SageMath
2178 doesn't know how to convert their elements into complex numbers,
2179 or even into algebraic reals::
2180
2181 sage: QQbar(RDF(1))
2182 Traceback (most recent call last):
2183 ...
2184 TypeError: Illegal initializer for algebraic number
2185 sage: AA(RR(1))
2186 Traceback (most recent call last):
2187 ...
2188 TypeError: Illegal initializer for algebraic number
2189
2190 TESTS:
2191
2192 The dimension of this algebra is `n^2`::
2193
2194 sage: d = ComplexHermitianEJA._max_random_instance_dimension()
2195 sage: n = ComplexHermitianEJA._max_random_instance_size(d)
2196 sage: J = ComplexHermitianEJA(n)
2197 sage: J.dimension() == n^2
2198 True
2199
2200 The Jordan multiplication is what we think it is::
2201
2202 sage: J = ComplexHermitianEJA.random_instance()
2203 sage: x,y = J.random_elements(2)
2204 sage: actual = (x*y).to_matrix()
2205 sage: X = x.to_matrix()
2206 sage: Y = y.to_matrix()
2207 sage: expected = (X*Y + Y*X)/2
2208 sage: actual == expected
2209 True
2210 sage: J(expected) == x*y
2211 True
2212
2213 We can change the generator prefix::
2214
2215 sage: ComplexHermitianEJA(2, prefix='z').gens()
2216 (z0, z1, z2, z3)
2217
2218 We can construct the (trivial) algebra of rank zero::
2219
2220 sage: ComplexHermitianEJA(0)
2221 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2222
2223 """
2224 def __init__(self, n, field=AA, **kwargs):
2225 from mjo.hurwitz import ComplexMatrixAlgebra
2226 A = ComplexMatrixAlgebra(n, scalars=field)
2227 super().__init__(A, **kwargs)
2228
2229 from mjo.eja.eja_cache import complex_hermitian_eja_coeffs
2230 a = complex_hermitian_eja_coeffs(self)
2231 if a is not None:
2232 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2233
2234 @staticmethod
2235 def _max_random_instance_size(max_dimension):
2236 # Obtained by solving d = n^2.
2237 # The ZZ-int-ZZ thing is just "floor."
2238 return ZZ(int(ZZ(max_dimension).sqrt()))
2239
2240 @classmethod
2241 def random_instance(cls, max_dimension=None, *args, **kwargs):
2242 """
2243 Return a random instance of this type of algebra.
2244 """
2245 class_max_d = cls._max_random_instance_dimension()
2246 if (max_dimension is None or max_dimension > class_max_d):
2247 max_dimension = class_max_d
2248 max_size = cls._max_random_instance_size(max_dimension)
2249 n = ZZ.random_element(max_size + 1)
2250 return cls(n, **kwargs)
2251
2252
2253 class QuaternionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2254 r"""
2255 The rank-n simple EJA consisting of self-adjoint n-by-n quaternion
2256 matrices, the usual symmetric Jordan product, and the
2257 real-part-of-trace inner product. It has dimension `2n^2 - n` over
2258 the reals.
2259
2260 SETUP::
2261
2262 sage: from mjo.eja.eja_algebra import QuaternionHermitianEJA
2263
2264 EXAMPLES:
2265
2266 In theory, our "field" can be any subfield of the reals::
2267
2268 sage: QuaternionHermitianEJA(2, field=RDF, check_axioms=True)
2269 Euclidean Jordan algebra of dimension 6 over Real Double Field
2270 sage: QuaternionHermitianEJA(2, field=RR, check_axioms=True)
2271 Euclidean Jordan algebra of dimension 6 over Real Field with
2272 53 bits of precision
2273
2274 TESTS:
2275
2276 The dimension of this algebra is `2*n^2 - n`::
2277
2278 sage: d = QuaternionHermitianEJA._max_random_instance_dimension()
2279 sage: n = QuaternionHermitianEJA._max_random_instance_size(d)
2280 sage: J = QuaternionHermitianEJA(n)
2281 sage: J.dimension() == 2*(n^2) - n
2282 True
2283
2284 The Jordan multiplication is what we think it is::
2285
2286 sage: J = QuaternionHermitianEJA.random_instance()
2287 sage: x,y = J.random_elements(2)
2288 sage: actual = (x*y).to_matrix()
2289 sage: X = x.to_matrix()
2290 sage: Y = y.to_matrix()
2291 sage: expected = (X*Y + Y*X)/2
2292 sage: actual == expected
2293 True
2294 sage: J(expected) == x*y
2295 True
2296
2297 We can change the generator prefix::
2298
2299 sage: QuaternionHermitianEJA(2, prefix='a').gens()
2300 (a0, a1, a2, a3, a4, a5)
2301
2302 We can construct the (trivial) algebra of rank zero::
2303
2304 sage: QuaternionHermitianEJA(0)
2305 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2306
2307 """
2308 def __init__(self, n, field=AA, **kwargs):
2309 from mjo.hurwitz import QuaternionMatrixAlgebra
2310 A = QuaternionMatrixAlgebra(n, scalars=field)
2311 super().__init__(A, **kwargs)
2312
2313 from mjo.eja.eja_cache import quaternion_hermitian_eja_coeffs
2314 a = quaternion_hermitian_eja_coeffs(self)
2315 if a is not None:
2316 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2317
2318
2319
2320 @staticmethod
2321 def _max_random_instance_size(max_dimension):
2322 r"""
2323 The maximum rank of a random QuaternionHermitianEJA.
2324 """
2325 # Obtained by solving d = 2n^2 - n.
2326 # The ZZ-int-ZZ thing is just "floor."
2327 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
2328
2329 @classmethod
2330 def random_instance(cls, max_dimension=None, *args, **kwargs):
2331 """
2332 Return a random instance of this type of algebra.
2333 """
2334 class_max_d = cls._max_random_instance_dimension()
2335 if (max_dimension is None or max_dimension > class_max_d):
2336 max_dimension = class_max_d
2337 max_size = cls._max_random_instance_size(max_dimension)
2338 n = ZZ.random_element(max_size + 1)
2339 return cls(n, **kwargs)
2340
2341 class OctonionHermitianEJA(HermitianMatrixEJA, RationalBasisEJA, ConcreteEJA):
2342 r"""
2343 SETUP::
2344
2345 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
2346 ....: OctonionHermitianEJA)
2347 sage: from mjo.hurwitz import Octonions, OctonionMatrixAlgebra
2348
2349 EXAMPLES:
2350
2351 The 3-by-3 algebra satisfies the axioms of an EJA::
2352
2353 sage: OctonionHermitianEJA(3, # long time
2354 ....: field=QQ, # long time
2355 ....: orthonormalize=False, # long time
2356 ....: check_axioms=True) # long time
2357 Euclidean Jordan algebra of dimension 27 over Rational Field
2358
2359 After a change-of-basis, the 2-by-2 algebra has the same
2360 multiplication table as the ten-dimensional Jordan spin algebra::
2361
2362 sage: A = OctonionMatrixAlgebra(2,Octonions(QQ),QQ)
2363 sage: b = OctonionHermitianEJA._denormalized_basis(A)
2364 sage: basis = (b[0] + b[9],) + b[1:9] + (b[0] - b[9],)
2365 sage: jp = OctonionHermitianEJA.jordan_product
2366 sage: ip = OctonionHermitianEJA.trace_inner_product
2367 sage: J = FiniteDimensionalEJA(basis,
2368 ....: jp,
2369 ....: ip,
2370 ....: field=QQ,
2371 ....: orthonormalize=False)
2372 sage: J.multiplication_table()
2373 +----++----+----+----+----+----+----+----+----+----+----+
2374 | * || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2375 +====++====+====+====+====+====+====+====+====+====+====+
2376 | b0 || b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 | b8 | b9 |
2377 +----++----+----+----+----+----+----+----+----+----+----+
2378 | b1 || b1 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2379 +----++----+----+----+----+----+----+----+----+----+----+
2380 | b2 || b2 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2381 +----++----+----+----+----+----+----+----+----+----+----+
2382 | b3 || b3 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 | 0 |
2383 +----++----+----+----+----+----+----+----+----+----+----+
2384 | b4 || b4 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 | 0 |
2385 +----++----+----+----+----+----+----+----+----+----+----+
2386 | b5 || b5 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 | 0 |
2387 +----++----+----+----+----+----+----+----+----+----+----+
2388 | b6 || b6 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 | 0 |
2389 +----++----+----+----+----+----+----+----+----+----+----+
2390 | b7 || b7 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 | 0 |
2391 +----++----+----+----+----+----+----+----+----+----+----+
2392 | b8 || b8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 | 0 |
2393 +----++----+----+----+----+----+----+----+----+----+----+
2394 | b9 || b9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | b0 |
2395 +----++----+----+----+----+----+----+----+----+----+----+
2396
2397 TESTS:
2398
2399 We can actually construct the 27-dimensional Albert algebra,
2400 and we get the right unit element if we recompute it::
2401
2402 sage: J = OctonionHermitianEJA(3, # long time
2403 ....: field=QQ, # long time
2404 ....: orthonormalize=False) # long time
2405 sage: J.one.clear_cache() # long time
2406 sage: J.one() # long time
2407 b0 + b9 + b26
2408 sage: J.one().to_matrix() # long time
2409 +----+----+----+
2410 | e0 | 0 | 0 |
2411 +----+----+----+
2412 | 0 | e0 | 0 |
2413 +----+----+----+
2414 | 0 | 0 | e0 |
2415 +----+----+----+
2416
2417 The 2-by-2 algebra is isomorphic to the ten-dimensional Jordan
2418 spin algebra, but just to be sure, we recompute its rank::
2419
2420 sage: J = OctonionHermitianEJA(2, # long time
2421 ....: field=QQ, # long time
2422 ....: orthonormalize=False) # long time
2423 sage: J.rank.clear_cache() # long time
2424 sage: J.rank() # long time
2425 2
2426
2427 """
2428 @staticmethod
2429 def _max_random_instance_size(max_dimension):
2430 r"""
2431 The maximum rank of a random OctonionHermitianEJA.
2432 """
2433 # There's certainly a formula for this, but with only four
2434 # cases to worry about, I'm not that motivated to derive it.
2435 if max_dimension >= 27:
2436 return 3
2437 elif max_dimension >= 10:
2438 return 2
2439 elif max_dimension >= 1:
2440 return 1
2441 else:
2442 return 0
2443
2444 @classmethod
2445 def random_instance(cls, max_dimension=None, *args, **kwargs):
2446 """
2447 Return a random instance of this type of algebra.
2448 """
2449 class_max_d = cls._max_random_instance_dimension()
2450 if (max_dimension is None or max_dimension > class_max_d):
2451 max_dimension = class_max_d
2452 max_size = cls._max_random_instance_size(max_dimension)
2453 n = ZZ.random_element(max_size + 1)
2454 return cls(n, **kwargs)
2455
2456 def __init__(self, n, field=AA, **kwargs):
2457 if n > 3:
2458 # Otherwise we don't get an EJA.
2459 raise ValueError("n cannot exceed 3")
2460
2461 # We know this is a valid EJA, but will double-check
2462 # if the user passes check_axioms=True.
2463 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2464
2465 from mjo.hurwitz import OctonionMatrixAlgebra
2466 A = OctonionMatrixAlgebra(n, scalars=field)
2467 super().__init__(A, **kwargs)
2468
2469 from mjo.eja.eja_cache import octonion_hermitian_eja_coeffs
2470 a = octonion_hermitian_eja_coeffs(self)
2471 if a is not None:
2472 self.rational_algebra()._charpoly_coefficients.set_cache(a)
2473
2474
2475 class AlbertEJA(OctonionHermitianEJA):
2476 r"""
2477 The Albert algebra is the algebra of three-by-three Hermitian
2478 matrices whose entries are octonions.
2479
2480 SETUP::
2481
2482 sage: from mjo.eja.eja_algebra import AlbertEJA
2483
2484 EXAMPLES::
2485
2486 sage: AlbertEJA(field=QQ, orthonormalize=False)
2487 Euclidean Jordan algebra of dimension 27 over Rational Field
2488 sage: AlbertEJA() # long time
2489 Euclidean Jordan algebra of dimension 27 over Algebraic Real Field
2490
2491 """
2492 def __init__(self, *args, **kwargs):
2493 super().__init__(3, *args, **kwargs)
2494
2495
2496 class HadamardEJA(RationalBasisEJA, ConcreteEJA):
2497 """
2498 Return the Euclidean Jordan algebra on `R^n` with the Hadamard
2499 (pointwise real-number multiplication) Jordan product and the
2500 usual inner-product.
2501
2502 This is nothing more than the Cartesian product of ``n`` copies of
2503 the one-dimensional Jordan spin algebra, and is the most common
2504 example of a non-simple Euclidean Jordan algebra.
2505
2506 SETUP::
2507
2508 sage: from mjo.eja.eja_algebra import HadamardEJA
2509
2510 EXAMPLES:
2511
2512 This multiplication table can be verified by hand::
2513
2514 sage: J = HadamardEJA(3)
2515 sage: b0,b1,b2 = J.gens()
2516 sage: b0*b0
2517 b0
2518 sage: b0*b1
2519 0
2520 sage: b0*b2
2521 0
2522 sage: b1*b1
2523 b1
2524 sage: b1*b2
2525 0
2526 sage: b2*b2
2527 b2
2528
2529 TESTS:
2530
2531 We can change the generator prefix::
2532
2533 sage: HadamardEJA(3, prefix='r').gens()
2534 (r0, r1, r2)
2535 """
2536 def __init__(self, n, field=AA, **kwargs):
2537 MS = MatrixSpace(field, n, 1)
2538
2539 if n == 0:
2540 jordan_product = lambda x,y: x
2541 inner_product = lambda x,y: x
2542 else:
2543 def jordan_product(x,y):
2544 return MS( xi*yi for (xi,yi) in zip(x,y) )
2545
2546 def inner_product(x,y):
2547 return (x.T*y)[0,0]
2548
2549 # New defaults for keyword arguments. Don't orthonormalize
2550 # because our basis is already orthonormal with respect to our
2551 # inner-product. Don't check the axioms, because we know this
2552 # is a valid EJA... but do double-check if the user passes
2553 # check_axioms=True. Note: we DON'T override the "check_field"
2554 # default here, because the user can pass in a field!
2555 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2556 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2557
2558 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2559 super().__init__(column_basis,
2560 jordan_product,
2561 inner_product,
2562 field=field,
2563 matrix_space=MS,
2564 associative=True,
2565 **kwargs)
2566 self.rank.set_cache(n)
2567
2568 self.one.set_cache( self.sum(self.gens()) )
2569
2570 @staticmethod
2571 def _max_random_instance_dimension():
2572 r"""
2573 There's no reason to go higher than five here. That's
2574 enough to get the point across.
2575 """
2576 return 5
2577
2578 @staticmethod
2579 def _max_random_instance_size(max_dimension):
2580 r"""
2581 The maximum size (=dimension) of a random HadamardEJA.
2582 """
2583 return max_dimension
2584
2585 @classmethod
2586 def random_instance(cls, max_dimension=None, *args, **kwargs):
2587 """
2588 Return a random instance of this type of algebra.
2589 """
2590 class_max_d = cls._max_random_instance_dimension()
2591 if (max_dimension is None or max_dimension > class_max_d):
2592 max_dimension = class_max_d
2593 max_size = cls._max_random_instance_size(max_dimension)
2594 n = ZZ.random_element(max_size + 1)
2595 return cls(n, **kwargs)
2596
2597
2598 class BilinearFormEJA(RationalBasisEJA, ConcreteEJA):
2599 r"""
2600 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2601 with the half-trace inner product and jordan product ``x*y =
2602 (<Bx,y>,y_bar>, x0*y_bar + y0*x_bar)`` where `B = 1 \times B22` is
2603 a symmetric positive-definite "bilinear form" matrix. Its
2604 dimension is the size of `B`, and it has rank two in dimensions
2605 larger than two. It reduces to the ``JordanSpinEJA`` when `B` is
2606 the identity matrix of order ``n``.
2607
2608 We insist that the one-by-one upper-left identity block of `B` be
2609 passed in as well so that we can be passed a matrix of size zero
2610 to construct a trivial algebra.
2611
2612 SETUP::
2613
2614 sage: from mjo.eja.eja_algebra import (BilinearFormEJA,
2615 ....: JordanSpinEJA)
2616
2617 EXAMPLES:
2618
2619 When no bilinear form is specified, the identity matrix is used,
2620 and the resulting algebra is the Jordan spin algebra::
2621
2622 sage: B = matrix.identity(AA,3)
2623 sage: J0 = BilinearFormEJA(B)
2624 sage: J1 = JordanSpinEJA(3)
2625 sage: J0.multiplication_table() == J0.multiplication_table()
2626 True
2627
2628 An error is raised if the matrix `B` does not correspond to a
2629 positive-definite bilinear form::
2630
2631 sage: B = matrix.random(QQ,2,3)
2632 sage: J = BilinearFormEJA(B)
2633 Traceback (most recent call last):
2634 ...
2635 ValueError: bilinear form is not positive-definite
2636 sage: B = matrix.zero(QQ,3)
2637 sage: J = BilinearFormEJA(B)
2638 Traceback (most recent call last):
2639 ...
2640 ValueError: bilinear form is not positive-definite
2641
2642 TESTS:
2643
2644 We can create a zero-dimensional algebra::
2645
2646 sage: B = matrix.identity(AA,0)
2647 sage: J = BilinearFormEJA(B)
2648 sage: J.basis()
2649 Finite family {}
2650
2651 We can check the multiplication condition given in the Jordan, von
2652 Neumann, and Wigner paper (and also discussed on my "On the
2653 symmetry..." paper). Note that this relies heavily on the standard
2654 choice of basis, as does anything utilizing the bilinear form
2655 matrix. We opt not to orthonormalize the basis, because if we
2656 did, we would have to normalize the `s_{i}` in a similar manner::
2657
2658 sage: n = ZZ.random_element(5)
2659 sage: M = matrix.random(QQ, max(0,n-1), algorithm='unimodular')
2660 sage: B11 = matrix.identity(QQ,1)
2661 sage: B22 = M.transpose()*M
2662 sage: B = block_matrix(2,2,[ [B11,0 ],
2663 ....: [0, B22 ] ])
2664 sage: J = BilinearFormEJA(B, orthonormalize=False)
2665 sage: eis = VectorSpace(M.base_ring(), M.ncols()).basis()
2666 sage: V = J.vector_space()
2667 sage: sis = [ J( V([0] + (M.inverse()*ei).list()).column() )
2668 ....: for ei in eis ]
2669 sage: actual = [ sis[i]*sis[j]
2670 ....: for i in range(n-1)
2671 ....: for j in range(n-1) ]
2672 sage: expected = [ J.one() if i == j else J.zero()
2673 ....: for i in range(n-1)
2674 ....: for j in range(n-1) ]
2675 sage: actual == expected
2676 True
2677
2678 """
2679 def __init__(self, B, field=AA, **kwargs):
2680 # The matrix "B" is supplied by the user in most cases,
2681 # so it makes sense to check whether or not its positive-
2682 # definite unless we are specifically asked not to...
2683 if ("check_axioms" not in kwargs) or kwargs["check_axioms"]:
2684 if not B.is_positive_definite():
2685 raise ValueError("bilinear form is not positive-definite")
2686
2687 # However, all of the other data for this EJA is computed
2688 # by us in manner that guarantees the axioms are
2689 # satisfied. So, again, unless we are specifically asked to
2690 # verify things, we'll skip the rest of the checks.
2691 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2692
2693 n = B.nrows()
2694 MS = MatrixSpace(field, n, 1)
2695
2696 def inner_product(x,y):
2697 return (y.T*B*x)[0,0]
2698
2699 def jordan_product(x,y):
2700 x0 = x[0,0]
2701 xbar = x[1:,0]
2702 y0 = y[0,0]
2703 ybar = y[1:,0]
2704 z0 = inner_product(y,x)
2705 zbar = y0*xbar + x0*ybar
2706 return MS([z0] + zbar.list())
2707
2708 column_basis = tuple( MS(b) for b in FreeModule(field, n).basis() )
2709
2710 # TODO: I haven't actually checked this, but it seems legit.
2711 associative = False
2712 if n <= 2:
2713 associative = True
2714
2715 super().__init__(column_basis,
2716 jordan_product,
2717 inner_product,
2718 field=field,
2719 matrix_space=MS,
2720 associative=associative,
2721 **kwargs)
2722
2723 # The rank of this algebra is two, unless we're in a
2724 # one-dimensional ambient space (because the rank is bounded
2725 # by the ambient dimension).
2726 self.rank.set_cache(min(n,2))
2727 if n == 0:
2728 self.one.set_cache( self.zero() )
2729 else:
2730 self.one.set_cache( self.monomial(0) )
2731
2732 @staticmethod
2733 def _max_random_instance_dimension():
2734 r"""
2735 There's no reason to go higher than five here. That's
2736 enough to get the point across.
2737 """
2738 return 5
2739
2740 @staticmethod
2741 def _max_random_instance_size(max_dimension):
2742 r"""
2743 The maximum size (=dimension) of a random BilinearFormEJA.
2744 """
2745 return max_dimension
2746
2747 @classmethod
2748 def random_instance(cls, max_dimension=None, *args, **kwargs):
2749 """
2750 Return a random instance of this algebra.
2751 """
2752 class_max_d = cls._max_random_instance_dimension()
2753 if (max_dimension is None or max_dimension > class_max_d):
2754 max_dimension = class_max_d
2755 max_size = cls._max_random_instance_size(max_dimension)
2756 n = ZZ.random_element(max_size + 1)
2757
2758 if n.is_zero():
2759 B = matrix.identity(ZZ, n)
2760 return cls(B, **kwargs)
2761
2762 B11 = matrix.identity(ZZ, 1)
2763 M = matrix.random(ZZ, n-1)
2764 I = matrix.identity(ZZ, n-1)
2765 alpha = ZZ.zero()
2766 while alpha.is_zero():
2767 alpha = ZZ.random_element().abs()
2768
2769 B22 = M.transpose()*M + alpha*I
2770
2771 from sage.matrix.special import block_matrix
2772 B = block_matrix(2,2, [ [B11, ZZ(0) ],
2773 [ZZ(0), B22 ] ])
2774
2775 return cls(B, **kwargs)
2776
2777
2778 class JordanSpinEJA(BilinearFormEJA):
2779 """
2780 The rank-2 simple EJA consisting of real vectors ``x=(x0, x_bar)``
2781 with the usual inner product and jordan product ``x*y =
2782 (<x,y>, x0*y_bar + y0*x_bar)``. It has dimension `n` over
2783 the reals.
2784
2785 SETUP::
2786
2787 sage: from mjo.eja.eja_algebra import JordanSpinEJA
2788
2789 EXAMPLES:
2790
2791 This multiplication table can be verified by hand::
2792
2793 sage: J = JordanSpinEJA(4)
2794 sage: b0,b1,b2,b3 = J.gens()
2795 sage: b0*b0
2796 b0
2797 sage: b0*b1
2798 b1
2799 sage: b0*b2
2800 b2
2801 sage: b0*b3
2802 b3
2803 sage: b1*b2
2804 0
2805 sage: b1*b3
2806 0
2807 sage: b2*b3
2808 0
2809
2810 We can change the generator prefix::
2811
2812 sage: JordanSpinEJA(2, prefix='B').gens()
2813 (B0, B1)
2814
2815 TESTS:
2816
2817 Ensure that we have the usual inner product on `R^n`::
2818
2819 sage: J = JordanSpinEJA.random_instance()
2820 sage: x,y = J.random_elements(2)
2821 sage: actual = x.inner_product(y)
2822 sage: expected = x.to_vector().inner_product(y.to_vector())
2823 sage: actual == expected
2824 True
2825
2826 """
2827 def __init__(self, n, *args, **kwargs):
2828 # This is a special case of the BilinearFormEJA with the
2829 # identity matrix as its bilinear form.
2830 B = matrix.identity(ZZ, n)
2831
2832 # Don't orthonormalize because our basis is already
2833 # orthonormal with respect to our inner-product.
2834 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2835
2836 # But also don't pass check_field=False here, because the user
2837 # can pass in a field!
2838 super().__init__(B, *args, **kwargs)
2839
2840 @classmethod
2841 def random_instance(cls, max_dimension=None, *args, **kwargs):
2842 """
2843 Return a random instance of this type of algebra.
2844
2845 Needed here to override the implementation for ``BilinearFormEJA``.
2846 """
2847 class_max_d = cls._max_random_instance_dimension()
2848 if (max_dimension is None or max_dimension > class_max_d):
2849 max_dimension = class_max_d
2850 max_size = cls._max_random_instance_size(max_dimension)
2851 n = ZZ.random_element(max_size + 1)
2852 return cls(n, **kwargs)
2853
2854
2855 class TrivialEJA(RationalBasisEJA, ConcreteEJA):
2856 """
2857 The trivial Euclidean Jordan algebra consisting of only a zero element.
2858
2859 SETUP::
2860
2861 sage: from mjo.eja.eja_algebra import TrivialEJA
2862
2863 EXAMPLES::
2864
2865 sage: J = TrivialEJA()
2866 sage: J.dimension()
2867 0
2868 sage: J.zero()
2869 0
2870 sage: J.one()
2871 0
2872 sage: 7*J.one()*12*J.one()
2873 0
2874 sage: J.one().inner_product(J.one())
2875 0
2876 sage: J.one().norm()
2877 0
2878 sage: J.one().subalgebra_generated_by()
2879 Euclidean Jordan algebra of dimension 0 over Algebraic Real Field
2880 sage: J.rank()
2881 0
2882
2883 """
2884 def __init__(self, field=AA, **kwargs):
2885 jordan_product = lambda x,y: x
2886 inner_product = lambda x,y: field.zero()
2887 basis = ()
2888 MS = MatrixSpace(field,0)
2889
2890 # New defaults for keyword arguments
2891 if "orthonormalize" not in kwargs: kwargs["orthonormalize"] = False
2892 if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
2893
2894 super().__init__(basis,
2895 jordan_product,
2896 inner_product,
2897 associative=True,
2898 field=field,
2899 matrix_space=MS,
2900 **kwargs)
2901
2902 # The rank is zero using my definition, namely the dimension of the
2903 # largest subalgebra generated by any element.
2904 self.rank.set_cache(0)
2905 self.one.set_cache( self.zero() )
2906
2907 @classmethod
2908 def random_instance(cls, max_dimension=None, *args, **kwargs):
2909 # We don't take a "size" argument so the superclass method is
2910 # inappropriate for us. The ``max_dimension`` argument is
2911 # included so that if this method is called generically with a
2912 # ``max_dimension=<whatever>`` argument, we don't try to pass
2913 # it on to the algebra constructor.
2914 return cls(**kwargs)
2915
2916
2917 class CartesianProductEJA(FiniteDimensionalEJA):
2918 r"""
2919 The external (orthogonal) direct sum of two or more Euclidean
2920 Jordan algebras. Every Euclidean Jordan algebra decomposes into an
2921 orthogonal direct sum of simple Euclidean Jordan algebras which is
2922 then isometric to a Cartesian product, so no generality is lost by
2923 providing only this construction.
2924
2925 SETUP::
2926
2927 sage: from mjo.eja.eja_algebra import (random_eja,
2928 ....: CartesianProductEJA,
2929 ....: ComplexHermitianEJA,
2930 ....: HadamardEJA,
2931 ....: JordanSpinEJA,
2932 ....: RealSymmetricEJA)
2933
2934 EXAMPLES:
2935
2936 The Jordan product is inherited from our factors and implemented by
2937 our CombinatorialFreeModule Cartesian product superclass::
2938
2939 sage: J1 = HadamardEJA(2)
2940 sage: J2 = RealSymmetricEJA(2)
2941 sage: J = cartesian_product([J1,J2])
2942 sage: x,y = J.random_elements(2)
2943 sage: x*y in J
2944 True
2945
2946 The ability to retrieve the original factors is implemented by our
2947 CombinatorialFreeModule Cartesian product superclass::
2948
2949 sage: J1 = HadamardEJA(2, field=QQ)
2950 sage: J2 = JordanSpinEJA(3, field=QQ)
2951 sage: J = cartesian_product([J1,J2])
2952 sage: J.cartesian_factors()
2953 (Euclidean Jordan algebra of dimension 2 over Rational Field,
2954 Euclidean Jordan algebra of dimension 3 over Rational Field)
2955
2956 You can provide more than two factors::
2957
2958 sage: J1 = HadamardEJA(2)
2959 sage: J2 = JordanSpinEJA(3)
2960 sage: J3 = RealSymmetricEJA(3)
2961 sage: cartesian_product([J1,J2,J3])
2962 Euclidean Jordan algebra of dimension 2 over Algebraic Real
2963 Field (+) Euclidean Jordan algebra of dimension 3 over Algebraic
2964 Real Field (+) Euclidean Jordan algebra of dimension 6 over
2965 Algebraic Real Field
2966
2967 Rank is additive on a Cartesian product::
2968
2969 sage: J1 = HadamardEJA(1)
2970 sage: J2 = RealSymmetricEJA(2)
2971 sage: J = cartesian_product([J1,J2])
2972 sage: J1.rank.clear_cache()
2973 sage: J2.rank.clear_cache()
2974 sage: J.rank.clear_cache()
2975 sage: J.rank()
2976 3
2977 sage: J.rank() == J1.rank() + J2.rank()
2978 True
2979
2980 The same rank computation works over the rationals, with whatever
2981 basis you like::
2982
2983 sage: J1 = HadamardEJA(1, field=QQ, orthonormalize=False)
2984 sage: J2 = RealSymmetricEJA(2, field=QQ, orthonormalize=False)
2985 sage: J = cartesian_product([J1,J2])
2986 sage: J1.rank.clear_cache()
2987 sage: J2.rank.clear_cache()
2988 sage: J.rank.clear_cache()
2989 sage: J.rank()
2990 3
2991 sage: J.rank() == J1.rank() + J2.rank()
2992 True
2993
2994 The product algebra will be associative if and only if all of its
2995 components are associative::
2996
2997 sage: J1 = HadamardEJA(2)
2998 sage: J1.is_associative()
2999 True
3000 sage: J2 = HadamardEJA(3)
3001 sage: J2.is_associative()
3002 True
3003 sage: J3 = RealSymmetricEJA(3)
3004 sage: J3.is_associative()
3005 False
3006 sage: CP1 = cartesian_product([J1,J2])
3007 sage: CP1.is_associative()
3008 True
3009 sage: CP2 = cartesian_product([J1,J3])
3010 sage: CP2.is_associative()
3011 False
3012
3013 Cartesian products of Cartesian products work::
3014
3015 sage: J1 = JordanSpinEJA(1)
3016 sage: J2 = JordanSpinEJA(1)
3017 sage: J3 = JordanSpinEJA(1)
3018 sage: J = cartesian_product([J1,cartesian_product([J2,J3])])
3019 sage: J.multiplication_table()
3020 +----++----+----+----+
3021 | * || b0 | b1 | b2 |
3022 +====++====+====+====+
3023 | b0 || b0 | 0 | 0 |
3024 +----++----+----+----+
3025 | b1 || 0 | b1 | 0 |
3026 +----++----+----+----+
3027 | b2 || 0 | 0 | b2 |
3028 +----++----+----+----+
3029 sage: HadamardEJA(3).multiplication_table()
3030 +----++----+----+----+
3031 | * || b0 | b1 | b2 |
3032 +====++====+====+====+
3033 | b0 || b0 | 0 | 0 |
3034 +----++----+----+----+
3035 | b1 || 0 | b1 | 0 |
3036 +----++----+----+----+
3037 | b2 || 0 | 0 | b2 |
3038 +----++----+----+----+
3039
3040 The "matrix space" of a Cartesian product always consists of
3041 ordered pairs (or triples, or...) whose components are the
3042 matrix spaces of its factors::
3043
3044 sage: J1 = HadamardEJA(2)
3045 sage: J2 = ComplexHermitianEJA(2)
3046 sage: J = cartesian_product([J1,J2])
3047 sage: J.matrix_space()
3048 The Cartesian product of (Full MatrixSpace of 2 by 1 dense
3049 matrices over Algebraic Real Field, Module of 2 by 2 matrices
3050 with entries in Algebraic Field over the scalar ring Algebraic
3051 Real Field)
3052 sage: J.one().to_matrix()[0]
3053 [1]
3054 [1]
3055 sage: J.one().to_matrix()[1]
3056 +---+---+
3057 | 1 | 0 |
3058 +---+---+
3059 | 0 | 1 |
3060 +---+---+
3061
3062 TESTS:
3063
3064 All factors must share the same base field::
3065
3066 sage: J1 = HadamardEJA(2, field=QQ)
3067 sage: J2 = RealSymmetricEJA(2)
3068 sage: CartesianProductEJA((J1,J2))
3069 Traceback (most recent call last):
3070 ...
3071 ValueError: all factors must share the same base field
3072
3073 The cached unit element is the same one that would be computed::
3074
3075 sage: J1 = random_eja() # long time
3076 sage: J2 = random_eja() # long time
3077 sage: J = cartesian_product([J1,J2]) # long time
3078 sage: actual = J.one() # long time
3079 sage: J.one.clear_cache() # long time
3080 sage: expected = J.one() # long time
3081 sage: actual == expected # long time
3082 True
3083 """
3084 Element = CartesianProductEJAElement
3085 def __init__(self, factors, **kwargs):
3086 m = len(factors)
3087 if m == 0:
3088 return TrivialEJA()
3089
3090 self._sets = factors
3091
3092 field = factors[0].base_ring()
3093 if not all( J.base_ring() == field for J in factors ):
3094 raise ValueError("all factors must share the same base field")
3095
3096 # Figure out the category to use.
3097 associative = all( f.is_associative() for f in factors )
3098 category = EuclideanJordanAlgebras(field)
3099 if associative: category = category.Associative()
3100 category = category.join([category, category.CartesianProducts()])
3101
3102 # Compute my matrix space. We don't simply use the
3103 # ``cartesian_product()`` functor here because it acts
3104 # differently on SageMath MatrixSpaces and our custom
3105 # MatrixAlgebras, which are CombinatorialFreeModules. We
3106 # always want the result to be represented (and indexed) as an
3107 # ordered tuple. This category isn't perfect, but is good
3108 # enough for what we need to do.
3109 MS_cat = MagmaticAlgebras(field).FiniteDimensional().WithBasis()
3110 MS_cat = MS_cat.Unital().CartesianProducts()
3111 MS_factors = tuple( J.matrix_space() for J in factors )
3112 from sage.sets.cartesian_product import CartesianProduct
3113 self._matrix_space = CartesianProduct(MS_factors, MS_cat)
3114
3115 self._matrix_basis = []
3116 zero = self._matrix_space.zero()
3117 for i in range(m):
3118 for b in factors[i].matrix_basis():
3119 z = list(zero)
3120 z[i] = b
3121 self._matrix_basis.append(z)
3122
3123 self._matrix_basis = tuple( self._matrix_space(b)
3124 for b in self._matrix_basis )
3125 n = len(self._matrix_basis)
3126
3127 # We already have what we need for the super-superclass constructor.
3128 CombinatorialFreeModule.__init__(self,
3129 field,
3130 range(n),
3131 prefix="b",
3132 category=category,
3133 bracket=False)
3134
3135 # Now create the vector space for the algebra, which will have
3136 # its own set of non-ambient coordinates (in terms of the
3137 # supplied basis).
3138 degree = sum( f._matrix_span.ambient_vector_space().degree()
3139 for f in factors )
3140 V = VectorSpace(field, degree)
3141 vector_basis = tuple( V(_all2list(b)) for b in self._matrix_basis )
3142
3143 # Save the span of our matrix basis (when written out as long
3144 # vectors) because otherwise we'll have to reconstruct it
3145 # every time we want to coerce a matrix into the algebra.
3146 self._matrix_span = V.span_of_basis( vector_basis, check=False)
3147
3148 # Since we don't (re)orthonormalize the basis, the FDEJA
3149 # constructor is going to set self._deortho_matrix to the
3150 # identity matrix. Here we set it to the correct value using
3151 # the deortho matrices from our factors.
3152 self._deortho_matrix = matrix.block_diagonal(
3153 [J._deortho_matrix for J in factors]
3154 )
3155
3156 self._inner_product_matrix = matrix.block_diagonal(
3157 [J._inner_product_matrix for J in factors]
3158 )
3159 self._inner_product_matrix._cache = {'hermitian': True}
3160 self._inner_product_matrix.set_immutable()
3161
3162 # Building the multiplication table is a bit more tricky
3163 # because we have to embed the entries of the factors'
3164 # multiplication tables into the product EJA.
3165 zed = self.zero()
3166 self._multiplication_table = [ [zed for j in range(i+1)]
3167 for i in range(n) ]
3168
3169 # Keep track of an offset that tallies the dimensions of all
3170 # previous factors. If the second factor is dim=2 and if the
3171 # first one is dim=3, then we want to skip the first 3x3 block
3172 # when copying the multiplication table for the second factor.
3173 offset = 0
3174 for f in range(m):
3175 phi_f = self.cartesian_embedding(f)
3176 factor_dim = factors[f].dimension()
3177 for i in range(factor_dim):
3178 for j in range(i+1):
3179 f_ij = factors[f]._multiplication_table[i][j]
3180 e = phi_f(f_ij)
3181 self._multiplication_table[offset+i][offset+j] = e
3182 offset += factor_dim
3183
3184 self.rank.set_cache(sum(J.rank() for J in factors))
3185 ones = tuple(J.one().to_matrix() for J in factors)
3186 self.one.set_cache(self(ones))
3187
3188 def _sets_keys(self):
3189 r"""
3190
3191 SETUP::
3192
3193 sage: from mjo.eja.eja_algebra import (ComplexHermitianEJA,
3194 ....: RealSymmetricEJA)
3195
3196 TESTS:
3197
3198 The superclass uses ``_sets_keys()`` to implement its
3199 ``cartesian_factors()`` method::
3200
3201 sage: J1 = RealSymmetricEJA(2,
3202 ....: field=QQ,
3203 ....: orthonormalize=False,
3204 ....: prefix="a")
3205 sage: J2 = ComplexHermitianEJA(2,field=QQ,orthonormalize=False)
3206 sage: J = cartesian_product([J1,J2])
3207 sage: x = sum(i*J.gens()[i] for i in range(len(J.gens())))
3208 sage: x.cartesian_factors()
3209 (a1 + 2*a2, 3*b0 + 4*b1 + 5*b2 + 6*b3)
3210
3211 """
3212 # Copy/pasted from CombinatorialFreeModule_CartesianProduct,
3213 # but returning a tuple instead of a list.
3214 return tuple(range(len(self.cartesian_factors())))
3215
3216 def cartesian_factors(self):
3217 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3218 return self._sets
3219
3220 def cartesian_factor(self, i):
3221 r"""
3222 Return the ``i``th factor of this algebra.
3223 """
3224 return self._sets[i]
3225
3226 def _repr_(self):
3227 # Copy/pasted from CombinatorialFreeModule_CartesianProduct.
3228 from sage.categories.cartesian_product import cartesian_product
3229 return cartesian_product.symbol.join("%s" % factor
3230 for factor in self._sets)
3231
3232
3233 @cached_method
3234 def cartesian_projection(self, i):
3235 r"""
3236 SETUP::
3237
3238 sage: from mjo.eja.eja_algebra import (random_eja,
3239 ....: JordanSpinEJA,
3240 ....: HadamardEJA,
3241 ....: RealSymmetricEJA,
3242 ....: ComplexHermitianEJA)
3243
3244 EXAMPLES:
3245
3246 The projection morphisms are Euclidean Jordan algebra
3247 operators::
3248
3249 sage: J1 = HadamardEJA(2)
3250 sage: J2 = RealSymmetricEJA(2)
3251 sage: J = cartesian_product([J1,J2])
3252 sage: J.cartesian_projection(0)
3253 Linear operator between finite-dimensional Euclidean Jordan
3254 algebras represented by the matrix:
3255 [1 0 0 0 0]
3256 [0 1 0 0 0]
3257 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3258 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3259 Algebraic Real Field
3260 Codomain: Euclidean Jordan algebra of dimension 2 over Algebraic
3261 Real Field
3262 sage: J.cartesian_projection(1)
3263 Linear operator between finite-dimensional Euclidean Jordan
3264 algebras represented by the matrix:
3265 [0 0 1 0 0]
3266 [0 0 0 1 0]
3267 [0 0 0 0 1]
3268 Domain: Euclidean Jordan algebra of dimension 2 over Algebraic
3269 Real Field (+) Euclidean Jordan algebra of dimension 3 over
3270 Algebraic Real Field
3271 Codomain: Euclidean Jordan algebra of dimension 3 over Algebraic
3272 Real Field
3273
3274 The projections work the way you'd expect on the vector
3275 representation of an element::
3276
3277 sage: J1 = JordanSpinEJA(2)
3278 sage: J2 = ComplexHermitianEJA(2)
3279 sage: J = cartesian_product([J1,J2])
3280 sage: pi_left = J.cartesian_projection(0)
3281 sage: pi_right = J.cartesian_projection(1)
3282 sage: pi_left(J.one()).to_vector()
3283 (1, 0)
3284 sage: pi_right(J.one()).to_vector()
3285 (1, 0, 0, 1)
3286 sage: J.one().to_vector()
3287 (1, 0, 1, 0, 0, 1)
3288
3289 TESTS:
3290
3291 The answer never changes::
3292
3293 sage: J1 = random_eja()
3294 sage: J2 = random_eja()
3295 sage: J = cartesian_product([J1,J2])
3296 sage: P0 = J.cartesian_projection(0)
3297 sage: P1 = J.cartesian_projection(0)
3298 sage: P0 == P1
3299 True
3300
3301 """
3302 offset = sum( self.cartesian_factor(k).dimension()
3303 for k in range(i) )
3304 Ji = self.cartesian_factor(i)
3305 Pi = self._module_morphism(lambda j: Ji.monomial(j - offset),
3306 codomain=Ji)
3307
3308 return FiniteDimensionalEJAOperator(self,Ji,Pi.matrix())
3309
3310 @cached_method
3311 def cartesian_embedding(self, i):
3312 r"""
3313 SETUP::
3314
3315 sage: from mjo.eja.eja_algebra import (random_eja,
3316 ....: JordanSpinEJA,
3317 ....: HadamardEJA,
3318 ....: RealSymmetricEJA)
3319
3320 EXAMPLES:
3321
3322 The embedding morphisms are Euclidean Jordan algebra
3323 operators::
3324
3325 sage: J1 = HadamardEJA(2)
3326 sage: J2 = RealSymmetricEJA(2)
3327 sage: J = cartesian_product([J1,J2])
3328 sage: J.cartesian_embedding(0)
3329 Linear operator between finite-dimensional Euclidean Jordan
3330 algebras represented by the matrix:
3331 [1 0]
3332 [0 1]
3333 [0 0]
3334 [0 0]
3335 [0 0]
3336 Domain: Euclidean Jordan algebra of dimension 2 over
3337 Algebraic Real Field
3338 Codomain: Euclidean Jordan algebra of dimension 2 over
3339 Algebraic Real Field (+) Euclidean Jordan algebra of
3340 dimension 3 over Algebraic Real Field
3341 sage: J.cartesian_embedding(1)
3342 Linear operator between finite-dimensional Euclidean Jordan
3343 algebras represented by the matrix:
3344 [0 0 0]
3345 [0 0 0]
3346 [1 0 0]
3347 [0 1 0]
3348 [0 0 1]
3349 Domain: Euclidean Jordan algebra of dimension 3 over
3350 Algebraic Real Field
3351 Codomain: Euclidean Jordan algebra of dimension 2 over
3352 Algebraic Real Field (+) Euclidean Jordan algebra of
3353 dimension 3 over Algebraic Real Field
3354
3355 The embeddings work the way you'd expect on the vector
3356 representation of an element::
3357
3358 sage: J1 = JordanSpinEJA(3)
3359 sage: J2 = RealSymmetricEJA(2)
3360 sage: J = cartesian_product([J1,J2])
3361 sage: iota_left = J.cartesian_embedding(0)
3362 sage: iota_right = J.cartesian_embedding(1)
3363 sage: iota_left(J1.zero()) == J.zero()
3364 True
3365 sage: iota_right(J2.zero()) == J.zero()
3366 True
3367 sage: J1.one().to_vector()
3368 (1, 0, 0)
3369 sage: iota_left(J1.one()).to_vector()
3370 (1, 0, 0, 0, 0, 0)
3371 sage: J2.one().to_vector()
3372 (1, 0, 1)
3373 sage: iota_right(J2.one()).to_vector()
3374 (0, 0, 0, 1, 0, 1)
3375 sage: J.one().to_vector()
3376 (1, 0, 0, 1, 0, 1)
3377
3378 TESTS:
3379
3380 The answer never changes::
3381
3382 sage: J1 = random_eja()
3383 sage: J2 = random_eja()
3384 sage: J = cartesian_product([J1,J2])
3385 sage: E0 = J.cartesian_embedding(0)
3386 sage: E1 = J.cartesian_embedding(0)
3387 sage: E0 == E1
3388 True
3389
3390 Composing a projection with the corresponding inclusion should
3391 produce the identity map, and mismatching them should produce
3392 the zero map::
3393
3394 sage: J1 = random_eja()
3395 sage: J2 = random_eja()
3396 sage: J = cartesian_product([J1,J2])
3397 sage: iota_left = J.cartesian_embedding(0)
3398 sage: iota_right = J.cartesian_embedding(1)
3399 sage: pi_left = J.cartesian_projection(0)
3400 sage: pi_right = J.cartesian_projection(1)
3401 sage: pi_left*iota_left == J1.one().operator()
3402 True
3403 sage: pi_right*iota_right == J2.one().operator()
3404 True
3405 sage: (pi_left*iota_right).is_zero()
3406 True
3407 sage: (pi_right*iota_left).is_zero()
3408 True
3409
3410 """
3411 offset = sum( self.cartesian_factor(k).dimension()
3412 for k in range(i) )
3413 Ji = self.cartesian_factor(i)
3414 Ei = Ji._module_morphism(lambda j: self.monomial(j + offset),
3415 codomain=self)
3416 return FiniteDimensionalEJAOperator(Ji,self,Ei.matrix())
3417
3418
3419
3420 FiniteDimensionalEJA.CartesianProduct = CartesianProductEJA
3421
3422 class RationalBasisCartesianProductEJA(CartesianProductEJA,
3423 RationalBasisEJA):
3424 r"""
3425 A separate class for products of algebras for which we know a
3426 rational basis.
3427
3428 SETUP::
3429
3430 sage: from mjo.eja.eja_algebra import (FiniteDimensionalEJA,
3431 ....: HadamardEJA,
3432 ....: JordanSpinEJA,
3433 ....: RealSymmetricEJA)
3434
3435 EXAMPLES:
3436
3437 This gives us fast characteristic polynomial computations in
3438 product algebras, too::
3439
3440
3441 sage: J1 = JordanSpinEJA(2)
3442 sage: J2 = RealSymmetricEJA(3)
3443 sage: J = cartesian_product([J1,J2])
3444 sage: J.characteristic_polynomial_of().degree()
3445 5
3446 sage: J.rank()
3447 5
3448
3449 TESTS:
3450
3451 The ``cartesian_product()`` function only uses the first factor to
3452 decide where the result will live; thus we have to be careful to
3453 check that all factors do indeed have a ``rational_algebra()`` method
3454 before we construct an algebra that claims to have a rational basis::
3455
3456 sage: J1 = HadamardEJA(2)
3457 sage: jp = lambda X,Y: X*Y
3458 sage: ip = lambda X,Y: X[0,0]*Y[0,0]
3459 sage: b1 = matrix(QQ, [[1]])
3460 sage: J2 = FiniteDimensionalEJA((b1,), jp, ip)
3461 sage: cartesian_product([J2,J1]) # factor one not RationalBasisEJA
3462 Euclidean Jordan algebra of dimension 1 over Algebraic Real
3463 Field (+) Euclidean Jordan algebra of dimension 2 over Algebraic
3464 Real Field
3465 sage: cartesian_product([J1,J2]) # factor one is RationalBasisEJA
3466 Traceback (most recent call last):
3467 ...
3468 ValueError: factor not a RationalBasisEJA
3469
3470 """
3471 def __init__(self, algebras, **kwargs):
3472 if not all( hasattr(r, "rational_algebra") for r in algebras ):
3473 raise ValueError("factor not a RationalBasisEJA")
3474
3475 CartesianProductEJA.__init__(self, algebras, **kwargs)
3476
3477 @cached_method
3478 def rational_algebra(self):
3479 if self.base_ring() is QQ:
3480 return self
3481
3482 return cartesian_product([
3483 r.rational_algebra() for r in self.cartesian_factors()
3484 ])
3485
3486
3487 RationalBasisEJA.CartesianProduct = RationalBasisCartesianProductEJA
3488
3489 def random_eja(max_dimension=None, *args, **kwargs):
3490 r"""
3491
3492 SETUP::
3493
3494 sage: from mjo.eja.eja_algebra import random_eja
3495
3496 TESTS::
3497
3498 sage: n = ZZ.random_element(1,5)
3499 sage: J = random_eja(max_dimension=n, field=QQ, orthonormalize=False)
3500 sage: J.dimension() <= n
3501 True
3502
3503 """
3504 # Use the ConcreteEJA default as the total upper bound (regardless
3505 # of any whether or not any individual factors set a lower limit).
3506 if max_dimension is None:
3507 max_dimension = ConcreteEJA._max_random_instance_dimension()
3508 J1 = ConcreteEJA.random_instance(max_dimension, *args, **kwargs)
3509
3510
3511 # Roll the dice to see if we attempt a Cartesian product.
3512 dice_roll = ZZ.random_element(len(ConcreteEJA.__subclasses__()) + 1)
3513 new_max_dimension = max_dimension - J1.dimension()
3514 if new_max_dimension == 0 or dice_roll != 0:
3515 # If it's already as big as we're willing to tolerate, just
3516 # return it and don't worry about Cartesian products.
3517 return J1
3518 else:
3519 # Use random_eja() again so we can get more than two factors
3520 # if the sub-call also Decides on a cartesian product.
3521 J2 = random_eja(new_max_dimension, *args, **kwargs)
3522 return cartesian_product([J1,J2])
3523
3524
3525 class ComplexSkewSymmetricEJA(RationalBasisEJA, ConcreteEJA):
3526 r"""
3527 The skew-symmetric EJA of order `2n` described in Faraut and
3528 Koranyi's Exercise III.1.b. It has dimension `2n^2 - n`.
3529
3530 It is (not obviously) isomorphic to the QuaternionHermitianEJA of
3531 order `n`, as can be inferred by comparing rank/dimension or
3532 explicitly from their "characteristic polynomial of" functions,
3533 which just so happen to align nicely.
3534
3535 SETUP::
3536
3537 sage: from mjo.eja.eja_algebra import (ComplexSkewSymmetricEJA,
3538 ....: QuaternionHermitianEJA)
3539 sage: from mjo.eja.eja_operator import FiniteDimensionalEJAOperator
3540
3541 EXAMPLES:
3542
3543 This EJA is isomorphic to the quaternions::
3544
3545 sage: J = ComplexSkewSymmetricEJA(2, field=QQ, orthonormalize=False)
3546 sage: K = QuaternionHermitianEJA(2, field=QQ, orthonormalize=False)
3547 sage: jordan_isom_matrix = matrix.diagonal(QQ,[-1,1,1,1,1,-1])
3548 sage: phi = FiniteDimensionalEJAOperator(J,K,jordan_isom_matrix)
3549 sage: all( phi(x*y) == phi(x)*phi(y)
3550 ....: for x in J.gens()
3551 ....: for y in J.gens() )
3552 True
3553 sage: x,y = J.random_elements(2)
3554 sage: phi(x*y) == phi(x)*phi(y)
3555 True
3556
3557 TESTS:
3558
3559 Random elements should satisfy the same conditions that the basis
3560 elements do::
3561
3562 sage: K = ComplexSkewSymmetricEJA.random_instance(field=QQ,
3563 ....: orthonormalize=False)
3564 sage: x,y = K.random_elements(2)
3565 sage: z = x*y
3566 sage: x = x.to_matrix()
3567 sage: y = y.to_matrix()
3568 sage: z = z.to_matrix()
3569 sage: all( e.is_skew_symmetric() for e in (x,y,z) )
3570 True
3571 sage: J = -K.one().to_matrix()
3572 sage: all( e*J == J*e.conjugate() for e in (x,y,z) )
3573 True
3574
3575 The power law in Faraut & Koranyi's II.7.a is satisfied.
3576 We're in a subalgebra of theirs, but powers are still
3577 defined the same::
3578
3579 sage: K = ComplexSkewSymmetricEJA.random_instance(field=QQ,
3580 ....: orthonormalize=False)
3581 sage: x = K.random_element()
3582 sage: k = ZZ.random_element(5)
3583 sage: actual = x^k
3584 sage: J = -K.one().to_matrix()
3585 sage: expected = K(-J*(J*x.to_matrix())^k)
3586 sage: actual == expected
3587 True
3588
3589 """
3590 @staticmethod
3591 def _max_random_instance_size(max_dimension):
3592 # Obtained by solving d = 2n^2 - n, which comes from noticing
3593 # that, in 2x2 block form, any element of this algebra has a
3594 # free skew-symmetric top-left block, a Hermitian top-right
3595 # block, and two bottom blocks that are determined by the top.
3596 # The ZZ-int-ZZ thing is just "floor."
3597 return ZZ(int(ZZ(8*max_dimension + 1).sqrt()/4 + 1/4))
3598
3599 @classmethod
3600 def random_instance(cls, max_dimension=None, *args, **kwargs):
3601 """
3602 Return a random instance of this type of algebra.
3603 """
3604 class_max_d = cls._max_random_instance_dimension()
3605 if (max_dimension is None or max_dimension > class_max_d):
3606 max_dimension = class_max_d
3607 max_size = cls._max_random_instance_size(max_dimension)
3608 n = ZZ.random_element(max_size + 1)
3609 return cls(n, **kwargs)
3610
3611 @staticmethod
3612 def _denormalized_basis(A):
3613 """
3614 SETUP::
3615
3616 sage: from mjo.hurwitz import ComplexMatrixAlgebra
3617 sage: from mjo.eja.eja_algebra import ComplexSkewSymmetricEJA
3618
3619 TESTS:
3620
3621 The basis elements are all skew-Hermitian::
3622
3623 sage: d_max = ComplexSkewSymmetricEJA._max_random_instance_dimension()
3624 sage: n_max = ComplexSkewSymmetricEJA._max_random_instance_size(d_max)
3625 sage: n = ZZ.random_element(n_max + 1)
3626 sage: A = ComplexMatrixAlgebra(2*n, scalars=QQ)
3627 sage: B = ComplexSkewSymmetricEJA._denormalized_basis(A)
3628 sage: all( M.is_skew_symmetric() for M in B)
3629 True
3630
3631 The basis elements ``b`` all satisfy ``b*J == J*b.conjugate()``,
3632 as in the definition of the algebra::
3633
3634 sage: d_max = ComplexSkewSymmetricEJA._max_random_instance_dimension()
3635 sage: n_max = ComplexSkewSymmetricEJA._max_random_instance_size(d_max)
3636 sage: n = ZZ.random_element(n_max + 1)
3637 sage: A = ComplexMatrixAlgebra(2*n, scalars=QQ)
3638 sage: I_n = matrix.identity(ZZ, n)
3639 sage: J = matrix.block(ZZ, 2, 2, (0, I_n, -I_n, 0), subdivide=False)
3640 sage: J = A.from_list(J.rows())
3641 sage: B = ComplexSkewSymmetricEJA._denormalized_basis(A)
3642 sage: all( b*J == J*b.conjugate() for b in B )
3643 True
3644
3645 """
3646 es = A.entry_algebra_gens()
3647 gen = lambda A,m: A.monomial(m)
3648
3649 basis = []
3650
3651 # The size of the blocks. We're going to treat these thing as
3652 # 2x2 block matrices,
3653 #
3654 # [ x1 x2 ]
3655 # [ -x2-conj x1-conj ]
3656 #
3657 # where x1 is skew-symmetric and x2 is Hermitian.
3658 #
3659 m = A.nrows()/2
3660
3661 # We only loop through the top half of the matrix, because the
3662 # bottom can be constructed from the top.
3663 for i in range(m):
3664 # First do the top-left block, which is skew-symmetric.
3665 # We can compute the bottom-right block in the process.
3666 for j in range(i+1):
3667 if i != j:
3668 # Skew-symmetry implies zeros for (i == j).
3669 for e in es:
3670 # Top-left block's entry.
3671 E_ij = gen(A, (i,j,e))
3672 E_ij -= gen(A, (j,i,e))
3673
3674 # Bottom-right block's entry.
3675 F_ij = gen(A, (i+m,j+m,e)).conjugate()
3676 F_ij -= gen(A, (j+m,i+m,e)).conjugate()
3677
3678 basis.append(E_ij + F_ij)
3679
3680 # Now do the top-right block, which is Hermitian, and compute
3681 # the bottom-left block along the way.
3682 for j in range(m,i+m+1):
3683 if (i+m) == j:
3684 # Hermitian matrices have real diagonal entries.
3685 # Top-right block's entry.
3686 E_ii = gen(A, (i,j,es[0]))
3687
3688 # Bottom-left block's entry. Don't conjugate
3689 # 'cause it's real.
3690 E_ii -= gen(A, (i+m,j-m,es[0]))
3691 basis.append(E_ii)
3692 else:
3693 for e in es:
3694 # Top-right block's entry. BEWARE! We're not
3695 # reflecting across the main diagonal as in
3696 # (i,j)~(j,i). We're only reflecting across
3697 # the diagonal for the top-right block.
3698 E_ij = gen(A, (i,j,e))
3699
3700 # Shift it back to non-offset coords, transpose,
3701 # conjugate, and put it back:
3702 #
3703 # (i,j) -> (i,j-m) -> (j-m, i) -> (j-m, i+m)
3704 E_ij += gen(A, (j-m,i+m,e)).conjugate()
3705
3706 # Bottom-left's block's below-diagonal entry.
3707 # Just shift the top-right coords down m and
3708 # left m.
3709 F_ij = -gen(A, (i+m,j-m,e)).conjugate()
3710 F_ij += -gen(A, (j,i,e)) # double-conjugate cancels
3711
3712 basis.append(E_ij + F_ij)
3713
3714 return tuple( basis )
3715
3716 @staticmethod
3717 @cached_method
3718 def _J_matrix(matrix_space):
3719 n = matrix_space.nrows() // 2
3720 F = matrix_space.base_ring()
3721 I_n = matrix.identity(F, n)
3722 J = matrix.block(F, 2, 2, (0, I_n, -I_n, 0), subdivide=False)
3723 return matrix_space.from_list(J.rows())
3724
3725 def J_matrix(self):
3726 return ComplexSkewSymmetricEJA._J_matrix(self.matrix_space())
3727
3728 def __init__(self, n, field=AA, **kwargs):
3729 # New code; always check the axioms.
3730 #if "check_axioms" not in kwargs: kwargs["check_axioms"] = False
3731
3732 from mjo.hurwitz import ComplexMatrixAlgebra
3733 A = ComplexMatrixAlgebra(2*n, scalars=field)
3734 J = ComplexSkewSymmetricEJA._J_matrix(A)
3735
3736 def jordan_product(X,Y):
3737 return (X*J*Y + Y*J*X)/2
3738
3739 def inner_product(X,Y):
3740 return (X.conjugate_transpose()*Y).trace().real()
3741
3742 super().__init__(self._denormalized_basis(A),
3743 jordan_product,
3744 inner_product,
3745 field=field,
3746 matrix_space=A,
3747 **kwargs)
3748
3749 # This algebra is conjectured (by me) to be isomorphic to
3750 # the quaternion Hermitian EJA of size n, and the rank
3751 # would follow from that.
3752 #self.rank.set_cache(n)
3753 self.one.set_cache( self(-J) )