X-Git-Url: http://gitweb.michael.orlitzky.com/?p=octave.git;a=blobdiff_plain;f=tests%2Fpreconditioned_conjugate_gradient_method_tests.m;h=a27d3e206b4de1ebe4e48f77fe9cae6d55e6c27b;hp=2c8ff84044fb9c3ffce03259a3d6af2cb4265366;hb=606266fd6248aa04a256a3fe23e98a83b1397c9e;hpb=e1b71b4ca7cfa08ac76744a17a3778d4ccfaa7e2 diff --git a/tests/preconditioned_conjugate_gradient_method_tests.m b/tests/preconditioned_conjugate_gradient_method_tests.m index 2c8ff84..a27d3e2 100644 --- a/tests/preconditioned_conjugate_gradient_method_tests.m +++ b/tests/preconditioned_conjugate_gradient_method_tests.m @@ -1,3 +1,9 @@ +## Used throughout. The PCGM uses the infinity norm as the stopping +## condition, so we had better also. +max_iterations = 10000; +tolerance = 1e-10; + +## First a simple example. A = [5,1,2; ... 1,6,3; ... 2,3,7]; @@ -6,63 +12,83 @@ M = eye(3); b = [1;2;3]; x0 = [1;1;1]; -cgm = conjugate_gradient_method(A, b, x0, 1e-6, 1000); -pcgm = preconditioned_conjugate_gradient_method(A, M, b, x0, 1e-6, 1000); -diff = norm(cgm - pcgm); +cgm = conjugate_gradient_method(A, b, x0, tolerance, max_iterations); +pcgm = preconditioned_conjugate_gradient_method(A, ... + M, ... + b, ... + x0, ... + tolerance, ... + max_iterations); +diff = norm(cgm - pcgm, 'inf'); unit_test_equals("PCGM agrees with CGM when M == I", ... true, ... - norm(diff) < 1e-6); + diff < 2*tolerance); -pcgm_simple = simple_preconditioned_cgm(A, M, b, x0, 1e-6, 1000); -diff = norm(pcgm_simple - pcgm); +pcgm_simple = simple_preconditioned_cgm(A, M, b, x0, tolerance, max_iterations); +diff = norm(pcgm_simple - pcgm, 'inf'); unit_test_equals("PCGM agrees with SimplePCGM when M == I", ... true, ... - norm(diff) < 1e-6); + diff < 2*tolerance); ## Needs to be symmetric! M = [0.97466, 0.24345, 0.54850; ... 0.24345, 0.73251, 0.76639; ... 0.54850, 0.76639, 1.47581]; -pcgm = preconditioned_conjugate_gradient_method(A, M, b, x0, 1e-6, 1000); -diff = norm(cgm - pcgm); +pcgm = preconditioned_conjugate_gradient_method(A, ... + M, ... + b, ... + x0, ... + tolerance, ... + max_iterations); +diff = norm(cgm - pcgm, 'inf'); unit_test_equals("PCGM agrees with CGM when M != I", ... true, ... - norm(diff) < 1e-6); + diff < 2*tolerance); -pcgm_simple = simple_preconditioned_cgm(A, M, b, x0, 1e-6, 1000); -diff = norm(pcgm_simple - pcgm); +pcgm_simple = simple_preconditioned_cgm(A, M, b, x0, tolerance, max_iterations); +diff = norm(pcgm_simple - pcgm, 'inf'); unit_test_equals("PCGM agrees with Simple PCGM when M != I", ... true, ... - norm(diff) < 1e-6); + diff < 2*tolerance); # Test again Octave's pcg() function. -max_iterations = 100000; -tolerance = 1e-11; -C = random_positive_definite_matrix(5, 1000); -M = C*C'; - for n = [ 5, 10, 25, 50, 100 ] - A = random_positive_definite_matrix(5, 1000); + A = random_positive_definite_matrix(n, 100); + + # Use the cholesky factorization as a preconditioner. + Ct = perturb(chol(A)); + C = Ct'; + M = Ct*C; # Assumed by Octave's implementation when you don't supply a # preconditioner. - x0 = zeros(5, 1); - b = unifrnd(-1000, 1000, 5, 1); - [o_x, o_flag, o_relres, o_iter] = pcg(A, b, tolerance, max_iterations, C, C'); + x0 = zeros(n, 1); + b = unifrnd(-100, 100, n, 1); + g = @(x) A*x - b; + + ## pcg() stops when the /relative/ norm falls below tolerance. To + ## eliminate the relativity, we divide the tolerance by the + ## quantity that pcg() will divide by. + [o_x, o_flag, o_relres, o_iter] = pcg(A, b, tolerance/norm(g(x0)), ... + max_iterations, C, C'); [x, k] = preconditioned_conjugate_gradient_method(A, M, - b, - x0, - tolerance, - max_iterations); - diff = norm(o_x - x); + b, + x0, + tolerance, + max_iterations); + + diff = norm(o_x - x, 'inf'); msg = sprintf("Our PCGM agrees with Octave's, n=%d.", n); - unit_test_equals(msg, true, norm(diff) < 1e-10); + ## There's no good way to choose the tolerance here, since each + ## individual algorithm terminates based on the (2,infinity)-norm of + ## the gradient. So we use two orders of magnitude. + unit_test_equals(msg, true, diff <= sqrt(tolerance)); end