X-Git-Url: http://gitweb.michael.orlitzky.com/?p=octave.git;a=blobdiff_plain;f=run-tests.m;h=2892ba0e84f916571960177c62bb297068d7b448;hp=1682d18d20acbdf7938ba5d81c68780bd2df3351;hb=d7a73d33b0567c9abd72151b2972d7c0eb66e6a1;hpb=9fb5a1527f1ea90f9074b6e318791e0cc43e18f7 diff --git a/run-tests.m b/run-tests.m index 1682d18..2892ba0 100755 --- a/run-tests.m +++ b/run-tests.m @@ -51,3 +51,54 @@ expected_A = [1, 0, 0, 0, 0; ... unit_test_equals("Homework #1 problem #1 Poisson matrix is correct", ... true, ... expected_A == poisson_matrix(4, 0, 1)); + + +g = @(x) 1 + atan(x); +expected_fp = 2.1323; +tol = 1 / 10^10; +x0 = 2.4; +unit_test_equals("Homework #2 problem #5 fixed point is correct", ... + expected_fp, ... + fixed_point_method(g, tol, x0)); + + +h = 0.5; +g1 = @(u) 1 + h*exp(-u(1)^2)/(1+u(2)^2); +g2 = @(u) 0.5 + h*atan(u(1)^2 + u(2)^2); +my_g = @(u) [g1(u), g2(u)]; +tol = 1 / 10^9; +u0 = [1,1]; +expected_fp = [1.0729, 1.0821]; +unit_test_equals("Homework #3 problem #3i fixed point is correct", ... + expected_fp, ... + fixed_point_method(my_g, tol, u0)); + + +f = @(x) x^6 - x - 1; +f_prime = @(x) 6*x^5 - 1; +tol = 1/1000000; +x0 = 2; +expected_root = 1.1347; +unit_test_equals("Newton's method agrees with Haskell", ... + expected_root, ... + newtons_method(f, f_prime, tol, x0)); + + + +f1 = @(u) u(1)^2 + u(1)*u(2)^3 - 9; +f2 = @(u) 3*u(1)^2*u(2) - u(2)^3 - 4; +f = @(u) [f1(u); f2(u)]; +## The partials for the Jacobian. +f1x = @(u) 2*u(1) + u(2)^3; +f1y = @(u) 3*u(1)*u(2)^2; +f2x = @(u) 6*u(1)*u(2); +f2y = @(u) 3*u(1)^2 - 3*u(2)^2; +## f_prime == Jacobian. +f_prime = @(u) [ f1x(u), f1y(u); f2x(u), f2y(u) ]; +tol = 1 / 10^12; +u0 = [1.2; 2.5]; +expected_root = [1.33635; 1.75424]; +[actual_root, iterations] = newtons_method(f, f_prime, tol, u0); +unit_test_equals("Homework #3 problem #4 root is correct", ... + expected_root, ... + actual_root);