X-Git-Url: http://gitweb.michael.orlitzky.com/?p=octave.git;a=blobdiff_plain;f=optimization%2Fpreconditioned_conjugate_gradient_method.m;h=35fecaa99cdb81b7f22836791797c0bb2fe1acac;hp=eb2089f5b4e50d367c8237be9c166d5065f70982;hb=302a62bb7c0adf581916fcd1f93faa719e8d51e8;hpb=af1b47d92cb94b9289987babefd34633f3bbe804 diff --git a/optimization/preconditioned_conjugate_gradient_method.m b/optimization/preconditioned_conjugate_gradient_method.m index eb2089f..35fecaa 100644 --- a/optimization/preconditioned_conjugate_gradient_method.m +++ b/optimization/preconditioned_conjugate_gradient_method.m @@ -1,8 +1,8 @@ -function [x, k] = preconditioned_conjugate_gradient_method(Q, - M, - b, - x0, - tolerance, +function [x, k] = preconditioned_conjugate_gradient_method(Q, ... + M, ... + b, ... + x0, ... + tolerance, ... max_iterations) % % Solve, @@ -58,8 +58,15 @@ function [x, k] = preconditioned_conjugate_gradient_method(Q, % REFERENCES: % % 1. Guler, Osman. Foundations of Optimization. New York, Springer, - % 2010. + % 2010. % + % 2. Shewchuk, Jonathan Richard. An Introduction to the Conjugate + % Gradient Method Without the Agonizing Pain, Edition 1.25. + % August 4, 1994. + % + + % We use this in the inner loop. + sqrt_n = floor(sqrt(length(x0))); % Set k=0 first, that way the references to xk,rk,zk,dk which % immediately follow correspond (semantically) to x0,r0,z0,d0. @@ -70,7 +77,7 @@ function [x, k] = preconditioned_conjugate_gradient_method(Q, zk = M \ rk; dk = -zk; - for k = [ 0 : max_iterations ] + while (k <= max_iterations) if (norm(rk) < tolerance) % Check our stopping condition. This should catch the k=0 case. @@ -85,15 +92,27 @@ function [x, k] = preconditioned_conjugate_gradient_method(Q, % do them both, so we precompute the more expensive operation. Qdk = Q * dk; - % After substituting the two previously-created variables, the - % following algorithm occurs verbatim in the reference. alpha_k = rkzk/(dk' * Qdk); x_next = xk + (alpha_k * dk); - r_next = rk + (alpha_k * Qdk); + + % The recursive definition of r_next is prone to accumulate + % roundoff error. When sqrt(n) divides k, we recompute the + % residual to minimize this error. This modification is due to the + % second reference. + if (mod(k, sqrt_n) == 0) + r_next = Q*x_next - b; + else + r_next = rk + (alpha_k * Qdk); + end + z_next = M \ r_next; beta_next = (r_next' * z_next)/rkzk; d_next = -z_next + beta_next*dk; + % We potentially just performed one more iteration than necessary + % in order to simplify the loop. Note that due to the structure of + % our loop, we will have k > max_iterations when we fail to + % converge. k = k + 1; xk = x_next; rk = r_next;