From 91069005ec9f5249efe64cb96fb84fbbd70aad25 Mon Sep 17 00:00:00 2001 From: Michael Orlitzky Date: Fri, 7 Feb 2014 10:20:26 -0500 Subject: [PATCH] More progress on the 1d FEM, the "big F" vector is now computed correctly. --- .ghci | 2 + src/FEM/R1.hs | 170 +++++++++++++++++++++++++++++++++++++++++++++----- 2 files changed, 156 insertions(+), 16 deletions(-) diff --git a/.ghci b/.ghci index f42b7bb..ebf54d4 100644 --- a/.ghci +++ b/.ghci @@ -4,6 +4,7 @@ -- Load everything. :{ :load src/BigFloat.hs + src/FEM/R1.hs src/Integration/Gaussian.hs src/Integration/Simpson.hs src/Integration/Trapezoid.hs @@ -21,6 +22,7 @@ :} import BigFloat +import FEM.R1 import Integration.Gaussian import Integration.Simpson import Integration.Trapezoid diff --git a/src/FEM/R1.hs b/src/FEM/R1.hs index c6a76c8..02eab31 100644 --- a/src/FEM/R1.hs +++ b/src/FEM/R1.hs @@ -20,28 +20,34 @@ where import qualified Algebra.Algebraic as Algebraic ( C ) import qualified Algebra.Field as Field ( C ) import qualified Algebra.RealField as RealField ( C ) +import qualified Algebra.ToRational as ToRational ( C ) import Data.Vector.Fixed ( Arity, S ) import NumericPrelude import qualified Prelude as P +import Integration.Gaussian ( gaussian ) import Linear.Matrix ( Col, Mat(..), (!!!), construct, + ifoldl2, nrows ) import Polynomials.Orthogonal ( legendre ) -- | Dirichlet boundary conditions. Since u(a)=u(b)=0 are fixed, -- there's no additional information conveyed by this type. -data Dirichlet = Dirichlet +data Dirichlet a = Dirichlet { domain_dirichlet :: Interval a } -- | Neumann boundary conditions. @alpha@ specifies A(a)u'(b) and -- @beta@ specifies A(b)u'(b). -data Neumann a = Neumann { alpha :: a, beta :: a } +data Neumann a = + Neumann { domain_neumann :: Interval a, + alpha :: a, + beta :: a } -- | Boundary conditions can be either Dirichlet or Neumann. -type BoundaryConditions a = Either Dirichlet (Neumann a) +type BoundaryConditions a = Either (Dirichlet a) (Neumann a) type Interval a = (a,a) @@ -54,8 +60,9 @@ data PDE a = c :: (a -> a), -- | f(x) f :: (a -> a), - -- | The domain in R^1 as an interval - domain :: Interval a, + + -- | The boundary conditions. The domain also specifies the + -- boundary in R^1. bdy :: BoundaryConditions a } @@ -63,8 +70,11 @@ data PDE a = -- | Non-PDE parameters for the finite element method. The additional -- type parameter @n@ should be a type-level representation of the -- largest element in @max_degrees@. It needs to be known statically --- for the dimensions of the pointer matrix. -data Params m n a = +-- for the dimensions of the pointer matrix. The parameter @l@ is +-- the number of global basis functions. It's equal to the number of +-- /internal/ mesh nodes (i.e. m-1), plus the sum of (p_i - 1) for +-- each p_i in max_degrees. +data Params m n l a = Params { -- | A partition of the domain. mesh :: Col m (Interval a), @@ -87,10 +97,11 @@ data Params m n a = -- -- >>> import Data.Vector.Fixed ( N5, N6 ) -- >>> import Linear.Matrix ( Col5, fromList ) +-- >>> import Naturals ( N19 ) -- -- >>> let p = fromList [[3],[3],[5],[4],[5]] :: Col5 Int -- >>> let mesh = undefined :: Col5 (Int,Int) --- >>> let params = Params mesh p :: Params N5 N5 Int +-- >>> let params = Params mesh p :: Params N5 N5 N19 Int -- >>> let row1 = [0,1,5,6,0,0] :: [Int] -- >>> let row2 = [1,2,7,8,0,0] :: [Int] -- >>> let row3 = [2,3,9,10,11,12] :: [Int] @@ -100,7 +111,7 @@ data Params m n a = -- >>> pointer params == expected -- True -- -pointer :: (Arity m, Arity n) => Params m n a -> Mat m (S n) Int +pointer :: (Arity m, Arity n, Arity l) => Params m n l a -> Mat m (S n) Int pointer params = construct lambda where @@ -135,15 +146,31 @@ pointer params = -- -- Examples: -- --- >>> let phi = affine (-6,9) +-- >>> let phi = affine (-6,7) -- >>> phi (-6) -- -1.0 --- >>> phi (9) +-- >>> phi 7 -- 1.0 -- affine :: Field.C a => (a,a) -> (a -> a) affine (x1,x2) x = (fromInteger 2)*(x - x1)/(x2 - x1) - (fromInteger 1) +-- | The inverse of 'affine'. It should send [-1,1] into [x1,x2]. +-- +-- Examples: +-- +-- >>> let phi = affine_inv (-6,7) +-- >>> phi (-1) +-- -6.0 +-- >>> phi 1 +-- 7.0 +-- +affine_inv :: Field.C a => (a,a) -> (a -> a) +affine_inv (x1,x2) x = + x*(x2 - x1)/two + (x1 + x2)/two + where + two = fromInteger 2 + -- | Orthonormal basis functions over [-1,1]. The test case below -- comes from Sage where the orthogonality of the polynomials' @@ -153,17 +180,128 @@ affine (x1,x2) x = (fromInteger 2)*(x - x1)/(x2 - x1) - (fromInteger 1) -- -- >>> import qualified Algebra.Absolute as Absolute ( abs ) -- --- >>> let expected = 6.33910180790284 --- >>> let actual = big_N 3 1.5 :: Double +-- >>> let expected = 2.99624907925257 +-- >>> let actual = big_N 4 1.5 :: Double -- >>> Absolute.abs (actual - expected) < 1e-12 -- True -- big_N :: forall a. (Algebraic.C a, RealField.C a) => Integer -> a -> a big_N k x | k < 0 = error "requested a negative basis function" + | k == 0 = (one - x) / (fromInteger 2) + | k == 1 = (one + x) / (fromInteger 2) | otherwise = - coeff * ( legendre (k+2) x - legendre k x ) + coeff * ( legendre k x - legendre (k-2) x ) where + two = fromInteger 2 four = fromInteger 4 - six = fromInteger 6 - coeff = one / (sqrt (four*(fromInteger k) + six)) :: a + coeff = one / (sqrt (four*(fromInteger k) - two)) :: a + + +-- | A matrix containing 'big_N' functions indexed by their +-- element/number. Each row in the matrix represents a finite element +-- (i.e. an interval in the mesh). Within row @i@, column @j@ contains +-- the @j@th 'big_N' basis function. +-- +-- Any given 'big_N' will probably wind up in this matrix multiple +-- times; the basis functions don't change depending on the +-- interval. Only the /number/ of basis functions does. Computing +-- them this way allows us to easily construct a lookup \"table\" of +-- the proper dimensions. +-- +-- The second example below relies on the fact that @big_N 3@ and +-- @big_N 6@ expand to Legendre polynomials (2,4) and (5,7) +-- respectively and so should be orthogonal over [-1,1]. +-- +-- Examples: +-- +-- >>> import Data.Vector.Fixed ( N5 ) +-- >>> import Integration.Gaussian ( gaussian ) +-- >>> import Linear.Matrix ( Col5, fromList ) +-- >>> import Naturals ( N19 ) +-- +-- >>> let p = fromList [[3],[3],[5],[4],[5]] :: Col5 Int +-- >>> let mesh = undefined :: Col5 (Double,Double) +-- >>> let params = Params mesh p :: Params N5 N5 N19 Double +-- >>> let big_ns = big_N_matrix params +-- >>> let n1 = big_ns !!! (1,0) +-- >>> let n4 = big_ns !!! (4,0) +-- >>> n1 1.5 == n4 1.5 +-- True +-- >>> let n1 = big_ns !!! (1,3) +-- >>> let n2 = big_ns !!! (2,4) +-- >>> gaussian (\x -> (n1 x) * (n2 x)) < 1e-12 +-- True +-- +big_N_matrix :: (Arity m, Arity n, Arity l, Algebraic.C a, RealField.C a) + => Params m n l a + -> Mat m (S n) (a -> a) +big_N_matrix params = + construct lambda + where + maxdeg i = (max_degrees params) !!! (i,0) + lambda i j = if j > maxdeg i + then (const $ fromInteger 0) + else big_N (toInteger j) + + + +-- | Compute the global load vector F. +-- +-- Examples: +-- +-- >>> import Data.Vector.Fixed ( N3, N4 ) +-- >>> import Linear.Matrix ( Col4, frobenius_norm, fromList ) +-- >>> import Naturals ( N7 ) +-- +-- >>> let big_A = const (1::Double) +-- >>> let c x = sin x +-- >>> let f x = x*(sin x) +-- >>> let bdy = Left (Dirichlet (0,1::Double)) +-- >>> let pde = PDE big_A c f bdy +-- +-- >>> let i1 = (0.0,1/3) +-- >>> let i2 = (1/3,2/3) +-- >>> let i3 = (2/3,4/5) +-- >>> let i4 = (4/5,1.0) +-- >>> let mesh = fromList [[i1], [i2], [i3], [i4]] :: Col4 (Double,Double) +-- >>> let pvec = fromList [[2],[3],[2],[1]] :: Col4 Int +-- >>> let params = Params mesh pvec :: Params N4 N3 N7 Double +-- +-- >>> let f1 = [0.0418] +-- >>> let f2 = [0.0805] +-- >>> let f3 = [0.1007] +-- >>> let f4 = [-0.0045] +-- >>> let f5 = [-0.0332] +-- >>> let f6 = [-0.0054] +-- >>> let f7 = [-0.0267] +-- >>> let expected = fromList [f1,f2,f3,f4,f5,f6,f7] :: Col N7 Double +-- >>> let actual = big_F pde params +-- >>> frobenius_norm (actual - expected) < 1e-4 +-- True +-- +big_F :: forall m n l a. + (Arity l, Arity m, Arity n, + Algebraic.C a, RealField.C a, ToRational.C a) + => PDE a + -> Params m n l a + -> Col l a +big_F pde params = + ifoldl2 accum zero (big_N_matrix params) + where + accum :: Int -> Int -> Col l a -> (a -> a) -> Col l a + accum i j prev_F this_N = + prev_F + this_F + where + two = fromInteger 2 + (x1,x2) = (mesh params) !!! (i,0) + q = affine_inv (x1,x2) + integrand x = ((f pde) (q x)) * (this_N x) + + -- The pointer matrix numbers from 1 so subtract one here to + -- get the right index. + global_idx = ((pointer params) !!! (i,j)) - 1 + this_F = construct lambda + lambda k _ = if k == global_idx + then (gaussian integrand)*(x2 - x1) / two + else fromInteger 0 -- 2.43.2