From: Michael Orlitzky Date: Thu, 6 Dec 2012 02:14:15 +0000 (-0500) Subject: Add the ODE.IVP module with Euler's method. X-Git-Url: http://gitweb.michael.orlitzky.com/?p=numerical-analysis.git;a=commitdiff_plain;h=ddad82e5f42a7d38d542fbb77e981dc7309089f4 Add the ODE.IVP module with Euler's method. Clean up .ghci a little bit and add the new module. --- diff --git a/.ghci b/.ghci index a04730c..c9819c7 100644 --- a/.ghci +++ b/.ghci @@ -2,15 +2,26 @@ :set -isrc -- Load everything. -:l src/Roots/Simple.hs src/Aliases.hs src/TwoTuple.hs src/Integration/Simpson.hs src/Integration/Trapezoid.hs +:{ +:load src/Aliases.hs + src/Integration/Simpson.hs + src/Integration/Trapezoid.hs + src/Misc.hs + src/ODE/IVP.hs + src/Roots/Simple.hs + src/TwoTuple.hs +:} -- Just for convenience. import Data.Number.BigFloat import Aliases -import TwoTuple import Integration.Simpson import Integration.Trapezoid +import Misc +import ODE.IVP +import Roots.Simple +import TwoTuple -- Use a calmer prompt. :set prompt "numerical-analysis> " diff --git a/src/ODE/IVP.hs b/src/ODE/IVP.hs new file mode 100644 index 0000000..381ff8a --- /dev/null +++ b/src/ODE/IVP.hs @@ -0,0 +1,80 @@ +{-# LANGUAGE ScopedTypeVariables #-} + +-- | Numerical solution of the initial value problem, +-- +-- y'(x) = f(x, y(x)) +-- y'(x0) = y0 +-- +-- for x in [x0, xN]. +-- + +module ODE.IVP +where + +import Misc (partition) + + +-- | A single iteration of Euler's method over the interval +-- [$x0$, $x0$+$h$]. +-- +-- Examples: +-- +-- >>> let x0 = 0.0 +-- >>> let y0 = 1.0 +-- >>> let h = 1.0 +-- >>> let f x y = y +-- >>> eulers_method1 x0 y0 f h +-- 2.0 +-- +eulers_method1 :: (RealFrac a, RealFrac b) + => a -- ^ x0, the initial point + -> b -- ^ y0, the initial value at x0 + -> (a -> b -> b) -- ^ The function f(x,y) + -> a -- ^ The step size h. + -> b +eulers_method1 x0 y0 f h = + y0 + h'*y' + where + h' = fromRational $ toRational h + y' = (f x0 y0) + + +-- | Perform $n$ iterations of Euler's method over the interval [$x0$, +-- $xN$]. The step size `h` will be calculated automatically. A list +-- of y-values will be returned. +-- +-- The explicit 'forall' in the type signature allows us to refer +-- back to the type variables 'a' and 'b' in the 'where' clause. +-- +-- Examples: +-- +-- >>> let x0 = 0.0 +-- >>> let xN = 1.0 +-- >>> let y0 = 1.0 +-- >>> let f x y = y +-- >>> let ys = eulers_method x0 xN y0 f 10000 +-- >>> let yN = head $ reverse ys +-- >>> abs ((exp 1) - yN) < 1/10^3 +-- True +-- +eulers_method :: forall a b c. (RealFrac a, RealFrac b, Integral c) + => a -- ^ x0, the initial point + -> b -- ^ y0, the initial value at x0 + -> a -- ^ xN, the terminal point + -> (a -> b -> b) -- ^ The function f(x,y) + -> c -- ^ n, the number of intervals to use. + -> [b] +eulers_method x0 y0 xN f n = + go xs y0 f + where + xs = partition n x0 xN + + -- The 'go' function actually does all the work. It takes a list + -- of intervals [(x0,x1), (x1, x2)...] and peels off the first + -- one. It then runs the single-step Euler's method on that + -- interval, and afterwards recurses down the rest of the list. + go :: [(a,a)] -> b -> (a -> b -> b) -> [b] + go [] _ _ = [] + go ((x0,x1):rest) y0 f = y1 : (go rest y1 f) + where + y1 = eulers_method1 x0 y0 f (x1 - x0)