X-Git-Url: http://gitweb.michael.orlitzky.com/?p=numerical-analysis.git;a=blobdiff_plain;f=src%2FLinear%2FQR.hs;h=ea72958d74163c30679ce75231b5a48a8f0f45dd;hp=58027bb0be7a8b574fe78bd437a683c1b30508e2;hb=6b6bae4206bab66823617e2ba77cdf3e8d3fb752;hpb=be2ec3ca8e6fda229e3ca608dcc75e085b3a0b0f diff --git a/src/Linear/QR.hs b/src/Linear/QR.hs index 58027bb..ea72958 100644 --- a/src/Linear/QR.hs +++ b/src/Linear/QR.hs @@ -12,6 +12,7 @@ import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) import Data.Vector.Fixed ( ifoldl ) import Data.Vector.Fixed.Cont ( Arity ) +import Debug.Trace import NumericPrelude hiding ( (*) ) import Linear.Matrix ( @@ -30,20 +31,52 @@ import Linear.Matrix ( -- -- Examples (Watkins, p. 193): -- --- >>> import Linear.Matrix ( Mat2, fromList ) +-- >>> import Normed ( Normed(..) ) +-- >>> import Linear.Vector ( Vec2, Vec3 ) +-- >>> import Linear.Matrix ( Mat2, Mat3, fromList, frobenius_norm ) +-- >>> import qualified Data.Vector.Fixed as V ( map ) +-- -- >>> let m = givens_rotator 0 1 1 1 :: Mat2 Double -- >>> let m2 = fromList [[1, -1],[1, 1]] :: Mat2 Double -- >>> m == (1 / (sqrt 2) :: Double) *> m2 -- True -- -givens_rotator :: forall m a. (Ring.C a, Algebraic.C a, Arity m) +-- >>> let m = fromList [[2,3],[5,7]] :: Mat2 Double +-- >>> let rot = givens_rotator 0 1 2.0 5.0 :: Mat2 Double +-- >>> ((transpose rot) * m) !!! (1,0) < 1e-12 +-- True +-- >>> let (Mat rows) = rot +-- >>> let (Mat cols) = transpose rot +-- >>> V.map norm rows :: Vec2 Double +-- fromList [1.0,1.0] +-- >>> V.map norm cols :: Vec2 Double +-- fromList [1.0,1.0] +-- +-- >>> let m = fromList [[12,-51,4],[6,167,-68],[-4,24,-41]] :: Mat3 Double +-- >>> let rot = givens_rotator 1 2 6 (-4) :: Mat3 Double +-- >>> let ex_rot_r1 = [1,0,0] :: [Double] +-- >>> let ex_rot_r2 = [0,0.83205,-0.55470] :: [Double] +-- >>> let ex_rot_r3 = [0, 0.55470, 0.83205] :: [Double] +-- >>> let ex_rot = fromList [ex_rot_r1, ex_rot_r2, ex_rot_r3] :: Mat3 Double +-- >>> frobenius_norm ((transpose rot) - ex_rot) < 1e-4 +-- True +-- >>> ((transpose rot) * m) !!! (2,0) == 0 +-- True +-- >>> let (Mat rows) = rot +-- >>> let (Mat cols) = transpose rot +-- >>> V.map norm rows :: Vec3 Double +-- fromList [1.0,1.0,1.0] +-- >>> V.map norm cols :: Vec3 Double +-- fromList [1.0,1.0,1.0] +-- +givens_rotator :: forall m a. (Eq a, Ring.C a, Algebraic.C a, Arity m) => Int -> Int -> a -> a -> Mat m m a givens_rotator i j xi xj = construct f where xnorm = sqrt $ xi^2 + xj^2 - c = xi / xnorm - s = xj / xnorm + c = if xnorm == (fromInteger 0) then (fromInteger 1) else xi / xnorm + s = if xnorm == (fromInteger 0) then (fromInteger 0) else xj / xnorm f :: Int -> Int -> a f y z @@ -65,7 +98,40 @@ givens_rotator i j xi xj = -- factorization. We keep the pair updated by multiplying @q@ and -- @r@ by the new rotator (or its transpose). -- -qr :: forall m n a. (Arity m, Arity n, Algebraic.C a, Ring.C a) +-- Examples: +-- +-- >>> import Linear.Matrix +-- +-- >>> let m = fromList [[1,2],[1,3]] :: Mat2 Double +-- >>> let (q,r) = qr m +-- >>> let c = (1 / (sqrt 2 :: Double)) +-- >>> let ex_q = c *> (fromList [[1,-1],[1,1]] :: Mat2 Double) +-- >>> let ex_r = c *> (fromList [[2,5],[0,1]] :: Mat2 Double) +-- >>> frobenius_norm (q - ex_q) == 0 +-- True +-- >>> frobenius_norm (r - ex_r) == 0 +-- True +-- >>> let m' = q*r +-- >>> frobenius_norm (m - m') < 1e-10 +-- True +-- >>> is_upper_triangular' 1e-10 r +-- True +-- +-- >>> let m = fromList [[2,3],[5,7]] :: Mat2 Double +-- >>> let (q,r) = qr m +-- >>> frobenius_norm (m - (q*r)) < 1e-12 +-- True +-- >>> is_upper_triangular' 1e-10 r +-- True +-- +-- >>> let m = fromList [[12,-51,4],[6,167,-68],[-4,24,-41]] :: Mat3 Double +-- >>> let (q,r) = qr m +-- >>> frobenius_norm (m - (q*r)) < 1e-12 +-- True +-- >>> is_upper_triangular' 1e-10 r +-- True +-- +qr :: forall m n a. (Arity m, Arity n, Eq a, Algebraic.C a, Ring.C a, Show a) => Mat m n a -> (Mat m m a, Mat m n a) qr matrix = ifoldl col_function initial_qr columns @@ -83,10 +149,13 @@ qr matrix = -- | Process the entries in a column, doing basically the same -- thing as col_dunction does. It updates the QR factorization, -- maybe, and returns the current one. - f col_idx (q,r) idx x - | idx <= col_idx = (q,r) -- leave it alone. - | otherwise = - (q*rotator, (transpose rotator)*r) + f col_idx (q,r) idx _ -- ignore the current element + | idx <= col_idx = (q,r) +-- trace ("---------------\nidx: " ++ (show idx) ++ ";\ncol_idx: " ++ (show col_idx) ++ "; leaving it alone") (q,r) -- leave it alone. + | otherwise = (q*rotator, (transpose rotator)*r) +-- trace ("---------------\nidx: " ++ (show idx) ++ ";\ncol_idx: " ++ (show col_idx) ++ ";\nupdating Q and R;\nq: " ++ (show q) ++ ";\nr " ++ (show r) ++ ";\nnew q: " ++ (show $ q*rotator) ++ ";\nnew r: " ++ (show $ (transpose rotator)*r) ++ ";\ny: " ++ (show y) ++ ";\nr[i,j]: " ++ (show (r !!! (col_idx, col_idx)))) +-- (q*rotator, (transpose rotator)*r) where + y = r !!! (idx, col_idx) rotator :: Mat m m a - rotator = givens_rotator col_idx idx (r !!! (idx, col_idx)) x + rotator = givens_rotator col_idx idx (r !!! (col_idx, col_idx)) y