X-Git-Url: http://gitweb.michael.orlitzky.com/?p=numerical-analysis.git;a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=82665578cf037def7c04ef223a8b6e350ad9232f;hp=cfa838042ee7bf0794e7a5275981f7ab16ffd7fb;hb=ca021dad591f47dbe1581c19c4ae4bf1fee821b9;hpb=9fa2506d30661e984ff74313c3884007067387cb diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index cfa8380..8266557 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -19,33 +19,28 @@ import Data.List (intercalate) import Data.Vector.Fixed ( (!), - N1, - N2, - N3, - N4, - N5, - S, - Z, generate, mk1, mk2, mk3, mk4, - mk5 - ) + mk5 ) import qualified Data.Vector.Fixed as V ( and, fromList, head, ifoldl, + ifoldr, imap, map, maximum, replicate, + reverse, toList, zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) import Linear.Vector ( Vec, delete, element_sum ) +import Naturals ( N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, S, Z ) import Normed ( Normed(..) ) import NumericPrelude hiding ( (*), abs ) @@ -55,6 +50,7 @@ import Algebra.Absolute ( abs ) import qualified Algebra.Additive as Additive ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) import Algebra.Algebraic ( root ) +import qualified Algebra.Field as Field ( C ) import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Module as Module ( C ) import qualified Algebra.RealRing as RealRing ( C ) @@ -72,29 +68,32 @@ type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a +-- * Type synonyms for 1-by-n row "vectors". + -- | Type synonym for row vectors expressed as 1-by-n matrices. type Row n a = Mat N1 n a --- Type synonyms for 1-by-n row "vectors". type Row1 a = Row N1 a type Row2 a = Row N2 a type Row3 a = Row N3 a type Row4 a = Row N4 a type Row5 a = Row N5 a +-- * Type synonyms for n-by-1 column "vectors". + -- | Type synonym for column vectors expressed as n-by-1 matrices. type Col n a = Mat n N1 a --- Type synonyms for n-by-1 column "vectors". type Col1 a = Col N1 a type Col2 a = Col N2 a type Col3 a = Col N3 a type Col4 a = Col N4 a type Col5 a = Col N5 a - --- We need a big column for Gaussian quadrature. -type N10 = S (S (S (S (S N5)))) -type Col10 a = Col N10 a +type Col6 a = Col N6 a +type Col7 a = Col N7 a +type Col8 a = Col N8 a +type Col9 a = Col N9 a +type Col10 a = Col N10 a -- We need a big column for Gaussian quadrature. instance (Eq a) => Eq (Mat m n a) where @@ -297,10 +296,33 @@ identity_matrix = -- Examples: -- -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double --- >>> cholesky m1 --- ((4.47213595499958,-0.22360679774997896),(0.0,4.466542286825459)) --- >>> (transpose (cholesky m1)) * (cholesky m1) --- ((20.000000000000004,-1.0),(-1.0,20.0)) +-- >>> let r = cholesky m1 +-- >>> frobenius_norm ((transpose r)*r - m1) < 1e-10 +-- True +-- >>> is_upper_triangular r +-- True +-- +-- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] +-- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] +-- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] +-- >>> let k4 = [0, 0, 0, 6, 0, 0, 0] :: [Double] +-- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double] +-- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double] +-- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double] +-- >>> let big_K = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double +-- +-- >>> let e1 = [2.449489742783178,0,0,0,0,0,0] :: [Double] +-- >>> let e2 = [-1.224744871391589,3,0,0,0,0,0] :: [Double] +-- >>> let e3 = [0,-5/2,5/2,0,0,0,0] :: [Double] +-- >>> let e4 = [0,0,0,2.449489742783178,0,0,0] :: [Double] +-- >>> let e5 = [0,0,0,0,2.449489742783178,0,0] :: [Double] +-- >>> let e6 = [0,0,0,0,0,2.449489742783178,0] :: [Double] +-- >>> let e7 = [0,0,0,0,0,0,3.872983346207417] :: [Double] +-- >>> let expected = fromList [e1,e2,e3,e4,e5,e6,e7] :: Mat N7 N7 Double +-- +-- >>> let r = cholesky big_K +-- >>> frobenius_norm (r - (transpose expected)) < 1e-12 +-- True -- cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n) => (Mat m n a) -> (Mat m n a) @@ -325,29 +347,26 @@ cholesky m = construct r -- >>> is_upper_triangular' 1e-10 m -- True -- --- TODO: --- --- 1. Don't cheat with lists. --- -is_upper_triangular' :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) +is_upper_triangular' :: forall m n a. + (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => a -- ^ The tolerance @epsilon@. -> Mat m n a -> Bool -is_upper_triangular' epsilon m = - and $ concat results +is_upper_triangular' epsilon matrix = + ifoldl2 f True matrix where - results = [[ test i j | i <- [0..(nrows m)-1]] | j <- [0..(ncols m)-1] ] - - test :: Int -> Int -> Bool - test i j + f :: Int -> Int -> Bool -> a -> Bool + f _ _ False _ = False + f i j True x | i <= j = True -- use "less than or equal to" so zero is a valid epsilon - | otherwise = abs (m !!! (i,j)) <= epsilon + | otherwise = abs x <= epsilon -- | Returns True if the given matrix is upper-triangular, and False --- otherwise. A specialized version of 'is_upper_triangular\'' with --- @epsilon = 0@. +-- otherwise. We don't delegate to the general +-- 'is_upper_triangular'' here because it imposes additional +-- typeclass constraints throughout the library. -- -- Examples: -- @@ -359,18 +378,22 @@ is_upper_triangular' epsilon m = -- >>> is_upper_triangular m -- True -- --- TODO: --- --- 1. The Ord constraint is too strong here, Eq would suffice. --- -is_upper_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) +is_upper_triangular :: forall m n a. + (Eq a, Ring.C a, Arity m, Arity n) => Mat m n a -> Bool -is_upper_triangular = is_upper_triangular' 0 +is_upper_triangular matrix = + ifoldl2 f True matrix + where + f :: Int -> Int -> Bool -> a -> Bool + f _ _ False _ = False + f i j True x + | i <= j = True + | otherwise = x == 0 + -- | Returns True if the given matrix is lower-triangular, and False --- otherwise. This is a specialized version of 'is_lower_triangular\'' --- with @epsilon = 0@. +-- otherwise. -- -- Examples: -- @@ -382,9 +405,8 @@ is_upper_triangular = is_upper_triangular' 0 -- >>> is_lower_triangular m -- False -- -is_lower_triangular :: (Ord a, +is_lower_triangular :: (Eq a, Ring.C a, - Absolute.C a, Arity m, Arity n) => Mat m n a @@ -442,35 +464,50 @@ is_triangular :: (Ord a, is_triangular m = is_upper_triangular m || is_lower_triangular m --- | Return the (i,j)th minor of m. +-- | Delete the @i@th row and @j@th column from the matrix. The name +-- \"preminor\" is made up, but is meant to signify that this is +-- usually used in the computationof a minor. A minor is simply the +-- determinant of a preminor in that case. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int --- >>> minor m 0 0 :: Mat2 Int +-- >>> preminor m 0 0 :: Mat2 Int -- ((5,6),(8,9)) --- >>> minor m 1 1 :: Mat2 Int +-- >>> preminor m 1 1 :: Mat2 Int -- ((1,3),(7,9)) -- -minor :: (m ~ S r, - n ~ S t, - Arity r, - Arity t) - => Mat m n a +preminor :: (Arity m, Arity n) + => Mat (S m) (S n) a -> Int -> Int - -> Mat r t a -minor (Mat rows) i j = m + -> Mat m n a +preminor (Mat rows) i j = m where rows' = delete rows i m = Mat $ V.map ((flip delete) j) rows' +-- | Compute the i,jth minor of a @matrix@. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Double +-- >>> minor m1 1 1 +-- -12.0 +-- +minor :: (Arity m, Determined (Mat m m) a) + => Mat (S m) (S m) a + -> Int + -> Int + -> a +minor matrix i j = determinant (preminor matrix i j) + class (Eq a, Ring.C a) => Determined p a where determinant :: (p a) -> a instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where - determinant (Mat rows) = (V.head . V.head) rows + determinant = unscalar instance (Ord a, Ring.C a, @@ -492,10 +529,8 @@ instance (Ord a, where m' i j = m !!! (i,j) - det_minor i j = determinant (minor m i j) - determinant_recursive = - sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (det_minor 0 j) + sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (minor m 0 j) | j <- [0..(ncols m)-1] ] @@ -544,11 +579,12 @@ instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows -instance (Algebraic.C a, +instance (Absolute.C a, + Algebraic.C a, ToRational.C a, Arity m) - => Normed (Mat (S m) N1 a) where - -- | Generic p-norms for vectors in R^n that are represented as nx1 + => Normed (Col (S m) a) where + -- | Generic p-norms for vectors in R^n that are represented as n-by-1 -- matrices. -- -- Examples: @@ -559,8 +595,12 @@ instance (Algebraic.C a, -- >>> norm_p 2 v1 -- 5.0 -- + -- >>> let v1 = vec2d (-1,1) :: Col2 Double + -- >>> norm_p 1 v1 :: Double + -- 2.0 + -- norm_p p (Mat rows) = - (root p') $ sum [fromRational' (toRational x)^p' | x <- xs] + (root p') $ sum [fromRational' (toRational $ abs x)^p' | x <- xs] where p' = toInteger p xs = concat $ V.toList $ V.map V.toList rows @@ -633,16 +673,22 @@ vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) vec5d :: (a,a,a,a,a) -> Col5 a vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) + -- Since we commandeered multiplication, we need to create 1x1 -- matrices in order to multiply things. scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) -dot :: (RealRing.C a, n ~ N1, m ~ S t, Arity t) - => Mat m n a - -> Mat m n a +-- Get the scalar value out of a 1x1 matrix. +unscalar :: Mat1 a -> a +unscalar (Mat rows) = V.head $ V.head rows + + +dot :: (Ring.C a, Arity m) + => Col (S m) a + -> Col (S m) a -> a -v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) +v1 `dot` v2 = unscalar $ ((transpose v1) * v2) -- | The angle between @v1@ and @v2@ in Euclidean space. @@ -656,12 +702,11 @@ v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) -- angle :: (Transcendental.C a, RealRing.C a, - n ~ N1, m ~ S t, Arity t, ToRational.C a) - => Mat m n a - -> Mat m n a + => Col m a + -> Col m a -> a angle v1 v2 = acos theta @@ -795,37 +840,73 @@ trace matrix = element_sum $ V.map V.head rows --- | Zip together two column matrices. +-- | Zip together two matrices. +-- +-- TODO: don't cheat with construct (map V.zips instead). -- -- Examples: -- -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int --- >>> colzip m1 m2 +-- >>> zip2 m1 m2 -- (((1,1)),((1,2)),((1,3))) -- -colzip :: Arity m => Col m a -> Col m a -> Col m (a,a) -colzip c1 c2 = +-- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int +-- >>> zip2 m1 m2 +-- (((1,1),(2,1)),((3,1),(4,1))) +-- +zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n b -> Mat m n (a,b) +zip2 m1 m2 = + construct lambda + where + lambda i j = (m1 !!! (i,j), m2 !!! (i,j)) + + +-- | Zip together three matrices. +-- +-- TODO: don't cheat with construct (map V.zips instead). +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int +-- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int +-- >>> let m3 = fromList [[4],[5],[6]] :: Col3 Int +-- >>> zip2three m1 m2 m3 +-- (((1,1,4)),((1,2,5)),((1,3,6))) +-- +-- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int +-- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int +-- >>> let m3 = fromList [[8,2],[6,3]] :: Mat2 Int +-- >>> zip2three m1 m2 m3 +-- (((1,1,8),(2,1,2)),((3,1,6),(4,1,3))) +-- +zip2three :: (Arity m, Arity n) + => Mat m n a + -> Mat m n a + -> Mat m n a + -> Mat m n (a,a,a) +zip2three m1 m2 m3 = construct lambda where - lambda i j = (c1 !!! (i,j), c2 !!! (i,j)) + lambda i j = (m1 !!! (i,j), m2 !!! (i,j), m3 !!! (i,j)) --- | Zip together two column matrices using the supplied function. +-- | Zip together two matrices using the supplied function. -- -- Examples: -- -- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer -- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer --- >>> colzipwith (^) c1 c2 +-- >>> zipwith2 (^) c1 c2 -- ((1),(32),(729)) -- -colzipwith :: Arity m +zipwith2 :: Arity m => (a -> a -> b) -> Col m a -> Col m a -> Col m b -colzipwith f c1 c2 = +zipwith2 f c1 c2 = construct lambda where lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j)) @@ -847,12 +928,13 @@ map2 f (Mat rows) = -- | Fold over the entire matrix passing the coordinates @i@ and @j@ --- (of the row/column) to the accumulation function. +-- (of the row/column) to the accumulation function. The fold occurs +-- from top-left to bottom-right. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int --- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m +-- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m -- 18 -- ifoldl2 :: forall a b m n. @@ -874,6 +956,36 @@ ifoldl2 f initial (Mat rows) = row_function rowinit idx r = V.ifoldl (g idx) rowinit r +-- | Fold over the entire matrix passing the coordinates @i@ and @j@ +-- (of the row/column) to the accumulation function. The fold occurs +-- from bottom-right to top-left. +-- +-- The order of the arguments in the supplied function are different +-- from those in V.ifoldr; we keep them similar to ifoldl2. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> ifoldr2 (\i j cur _ -> cur + i + j) 0 m +-- 18 +-- +ifoldr2 :: forall a b m n. + (Int -> Int -> b -> a -> b) + -> b + -> Mat m n a + -> b +ifoldr2 f initial (Mat rows) = + V.ifoldr row_function initial rows + where + -- | Swap the order of arguments in @f@ so that it agrees with the + -- @f@ passed to ifoldl2. + g :: Int -> Int -> a -> b -> b + g w x y z = f w x z y + + row_function :: Int -> Vec n a -> b -> b + row_function idx r rowinit = V.ifoldr (g idx) rowinit r + + -- | Map a function over a matrix of any dimensions, passing the -- coordinates @i@ and @j@ to the function @f@. -- @@ -888,3 +1000,84 @@ imap2 f (Mat rows) = Mat $ V.imap g rows where g i = V.imap (f i) + + +-- | Reverse the order of elements in a matrix. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1,2,3]] :: Row3 Int +-- >>> reverse2 m1 +-- ((3,2,1)) +-- +-- >>> let m1 = vec3d (1,2,3 :: Int) +-- >>> reverse2 m1 +-- ((3),(2),(1)) +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> reverse2 m +-- ((9,8,7),(6,5,4),(3,2,1)) +-- +reverse2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a +reverse2 (Mat rows) = Mat $ V.reverse $ V.map V.reverse rows + + +-- | Unsafely set the (i,j) element of the given matrix. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> set_idx m (1,1) 17 +-- ((1,2,3),(4,17,6),(7,8,9)) +-- +set_idx :: forall m n a. + (Arity m, Arity n) + => Mat m n a + -> (Int, Int) + -> a + -> Mat m n a +set_idx matrix (i,j) newval = + imap2 updater matrix + where + updater :: Int -> Int -> a -> a + updater k l existing = + if k == i && l == j + then newval + else existing + + +-- | Compute the i,jth cofactor of the given @matrix@. This simply +-- premultiplues the i,jth minor by (-1)^(i+j). +cofactor :: (Arity m, Determined (Mat m m) a) + => Mat (S m) (S m) a + -> Int + -> Int + -> a +cofactor matrix i j = + (-1)^(toInteger i + toInteger j) NP.* (minor matrix i j) + + +-- | Compute the inverse of a matrix using cofactor expansion +-- (generalized Cramer's rule). +-- +-- Examples: +-- +-- >>> let m1 = fromList [[37,22],[17,54]] :: Mat2 Double +-- >>> let e1 = [54/1624, -22/1624] :: [Double] +-- >>> let e2 = [-17/1624, 37/1624] :: [Double] +-- >>> let expected = fromList [e1, e2] :: Mat2 Double +-- >>> let actual = inverse m1 +-- >>> frobenius_norm (actual - expected) < 1e-12 +-- True +-- +inverse :: (Arity m, + Determined (Mat (S m) (S m)) a, + Determined (Mat m m) a, + Field.C a) + => Mat (S m) (S m) a + -> Mat (S m) (S m) a +inverse matrix = + (1 / (determinant matrix)) *> (transpose $ construct lambda) + where + lambda i j = cofactor matrix i j +