X-Git-Url: http://gitweb.michael.orlitzky.com/?p=numerical-analysis.git;a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=82665578cf037def7c04ef223a8b6e350ad9232f;hp=119d77089461dfae968320c79bd1375c31d46b41;hb=ca021dad591f47dbe1581c19c4ae4bf1fee821b9;hpb=342fb80c0a34bd362a51fd62989eeef462b58721 diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 119d770..8266557 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -19,13 +19,6 @@ import Data.List (intercalate) import Data.Vector.Fixed ( (!), - N1, - N2, - N3, - N4, - N5, - S, - Z, generate, mk1, mk2, @@ -47,6 +40,7 @@ import qualified Data.Vector.Fixed as V ( zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) import Linear.Vector ( Vec, delete, element_sum ) +import Naturals ( N1, N2, N3, N4, N5, N6, N7, N8, N9, N10, S, Z ) import Normed ( Normed(..) ) import NumericPrelude hiding ( (*), abs ) @@ -56,6 +50,7 @@ import Algebra.Absolute ( abs ) import qualified Algebra.Additive as Additive ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) import Algebra.Algebraic ( root ) +import qualified Algebra.Field as Field ( C ) import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Module as Module ( C ) import qualified Algebra.RealRing as RealRing ( C ) @@ -73,29 +68,32 @@ type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a +-- * Type synonyms for 1-by-n row "vectors". + -- | Type synonym for row vectors expressed as 1-by-n matrices. type Row n a = Mat N1 n a --- Type synonyms for 1-by-n row "vectors". type Row1 a = Row N1 a type Row2 a = Row N2 a type Row3 a = Row N3 a type Row4 a = Row N4 a type Row5 a = Row N5 a +-- * Type synonyms for n-by-1 column "vectors". + -- | Type synonym for column vectors expressed as n-by-1 matrices. type Col n a = Mat n N1 a --- Type synonyms for n-by-1 column "vectors". type Col1 a = Col N1 a type Col2 a = Col N2 a type Col3 a = Col N3 a type Col4 a = Col N4 a type Col5 a = Col N5 a - --- We need a big column for Gaussian quadrature. -type N10 = S (S (S (S (S N5)))) -type Col10 a = Col N10 a +type Col6 a = Col N6 a +type Col7 a = Col N7 a +type Col8 a = Col N8 a +type Col9 a = Col N9 a +type Col10 a = Col N10 a -- We need a big column for Gaussian quadrature. instance (Eq a) => Eq (Mat m n a) where @@ -304,7 +302,6 @@ identity_matrix = -- >>> is_upper_triangular r -- True -- --- >>> import Naturals ( N7 ) -- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] -- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] -- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] @@ -467,35 +464,50 @@ is_triangular :: (Ord a, is_triangular m = is_upper_triangular m || is_lower_triangular m --- | Return the (i,j)th minor of m. +-- | Delete the @i@th row and @j@th column from the matrix. The name +-- \"preminor\" is made up, but is meant to signify that this is +-- usually used in the computationof a minor. A minor is simply the +-- determinant of a preminor in that case. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int --- >>> minor m 0 0 :: Mat2 Int +-- >>> preminor m 0 0 :: Mat2 Int -- ((5,6),(8,9)) --- >>> minor m 1 1 :: Mat2 Int +-- >>> preminor m 1 1 :: Mat2 Int -- ((1,3),(7,9)) -- -minor :: (m ~ S r, - n ~ S t, - Arity r, - Arity t) - => Mat m n a +preminor :: (Arity m, Arity n) + => Mat (S m) (S n) a -> Int -> Int - -> Mat r t a -minor (Mat rows) i j = m + -> Mat m n a +preminor (Mat rows) i j = m where rows' = delete rows i m = Mat $ V.map ((flip delete) j) rows' +-- | Compute the i,jth minor of a @matrix@. +-- +-- Examples: +-- +-- >>> let m1 = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Double +-- >>> minor m1 1 1 +-- -12.0 +-- +minor :: (Arity m, Determined (Mat m m) a) + => Mat (S m) (S m) a + -> Int + -> Int + -> a +minor matrix i j = determinant (preminor matrix i j) + class (Eq a, Ring.C a) => Determined p a where determinant :: (p a) -> a instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where - determinant (Mat rows) = (V.head . V.head) rows + determinant = unscalar instance (Ord a, Ring.C a, @@ -517,10 +529,8 @@ instance (Ord a, where m' i j = m !!! (i,j) - det_minor i j = determinant (minor m i j) - determinant_recursive = - sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (det_minor 0 j) + sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (minor m 0 j) | j <- [0..(ncols m)-1] ] @@ -569,11 +579,12 @@ instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows -instance (Algebraic.C a, +instance (Absolute.C a, + Algebraic.C a, ToRational.C a, Arity m) - => Normed (Mat (S m) N1 a) where - -- | Generic p-norms for vectors in R^n that are represented as nx1 + => Normed (Col (S m) a) where + -- | Generic p-norms for vectors in R^n that are represented as n-by-1 -- matrices. -- -- Examples: @@ -584,8 +595,12 @@ instance (Algebraic.C a, -- >>> norm_p 2 v1 -- 5.0 -- + -- >>> let v1 = vec2d (-1,1) :: Col2 Double + -- >>> norm_p 1 v1 :: Double + -- 2.0 + -- norm_p p (Mat rows) = - (root p') $ sum [fromRational' (toRational x)^p' | x <- xs] + (root p') $ sum [fromRational' (toRational $ abs x)^p' | x <- xs] where p' = toInteger p xs = concat $ V.toList $ V.map V.toList rows @@ -658,6 +673,7 @@ vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) vec5d :: (a,a,a,a,a) -> Col5 a vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) + -- Since we commandeered multiplication, we need to create 1x1 -- matrices in order to multiply things. scalar :: a -> Mat1 a @@ -840,7 +856,7 @@ trace matrix = -- >>> zip2 m1 m2 -- (((1,1),(2,1)),((3,1),(4,1))) -- -zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a -> Mat m n (a,a) +zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n b -> Mat m n (a,b) zip2 m1 m2 = construct lambda where @@ -1028,3 +1044,40 @@ set_idx matrix (i,j) newval = if k == i && l == j then newval else existing + + +-- | Compute the i,jth cofactor of the given @matrix@. This simply +-- premultiplues the i,jth minor by (-1)^(i+j). +cofactor :: (Arity m, Determined (Mat m m) a) + => Mat (S m) (S m) a + -> Int + -> Int + -> a +cofactor matrix i j = + (-1)^(toInteger i + toInteger j) NP.* (minor matrix i j) + + +-- | Compute the inverse of a matrix using cofactor expansion +-- (generalized Cramer's rule). +-- +-- Examples: +-- +-- >>> let m1 = fromList [[37,22],[17,54]] :: Mat2 Double +-- >>> let e1 = [54/1624, -22/1624] :: [Double] +-- >>> let e2 = [-17/1624, 37/1624] :: [Double] +-- >>> let expected = fromList [e1, e2] :: Mat2 Double +-- >>> let actual = inverse m1 +-- >>> frobenius_norm (actual - expected) < 1e-12 +-- True +-- +inverse :: (Arity m, + Determined (Mat (S m) (S m)) a, + Determined (Mat m m) a, + Field.C a) + => Mat (S m) (S m) a + -> Mat (S m) (S m) a +inverse matrix = + (1 / (determinant matrix)) *> (transpose $ construct lambda) + where + lambda i j = cofactor matrix i j +