X-Git-Url: http://gitweb.michael.orlitzky.com/?p=numerical-analysis.git;a=blobdiff_plain;f=src%2FLinear%2FMatrix.hs;h=34920b4f025e7e2027588ab07c14d6772b679ab2;hp=7452007990e0e015c45610b03605cf6cfc642aad;hb=4e464a486bef07db44de9c3d3fae0c8094401b09;hpb=1f64a1a33b2636ef2e863a0b577c8d8d50233580 diff --git a/src/Linear/Matrix.hs b/src/Linear/Matrix.hs index 7452007..34920b4 100644 --- a/src/Linear/Matrix.hs +++ b/src/Linear/Matrix.hs @@ -2,6 +2,7 @@ {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} +{-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE RebindableSyntax #-} @@ -17,6 +18,7 @@ where import Data.List (intercalate) import Data.Vector.Fixed ( + (!), N1, N2, N3, @@ -24,6 +26,7 @@ import Data.Vector.Fixed ( N5, S, Z, + generate, mk1, mk2, mk3, @@ -33,37 +36,61 @@ import Data.Vector.Fixed ( import qualified Data.Vector.Fixed as V ( and, fromList, + head, length, map, maximum, replicate, toList, - zipWith - ) -import Data.Vector.Fixed.Boxed (Vec) -import Data.Vector.Fixed.Internal (Arity, arity) -import Linear.Vector -import Normed - -import NumericPrelude hiding ((*), abs) -import qualified NumericPrelude as NP ((*)) -import qualified Algebra.Algebraic as Algebraic -import Algebra.Algebraic (root) -import qualified Algebra.Additive as Additive -import qualified Algebra.Ring as Ring -import qualified Algebra.Module as Module -import qualified Algebra.RealRing as RealRing -import qualified Algebra.ToRational as ToRational -import qualified Algebra.Transcendental as Transcendental -import qualified Prelude as P - + zipWith ) +import Data.Vector.Fixed.Cont ( Arity, arity ) +import Linear.Vector ( Vec, delete, element_sum ) +import Normed ( Normed(..) ) + +import NumericPrelude hiding ( (*), abs ) +import qualified NumericPrelude as NP ( (*) ) +import qualified Algebra.Absolute as Absolute ( C ) +import Algebra.Absolute ( abs ) +import qualified Algebra.Additive as Additive ( C ) +import qualified Algebra.Algebraic as Algebraic ( C ) +import Algebra.Algebraic ( root ) +import qualified Algebra.Ring as Ring ( C ) +import qualified Algebra.Module as Module ( C ) +import qualified Algebra.RealRing as RealRing ( C ) +import qualified Algebra.ToRational as ToRational ( C ) +import qualified Algebra.Transcendental as Transcendental ( C ) +import qualified Prelude as P ( map ) + +-- | Our main matrix type. data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) + +-- Type synonyms for n-by-n matrices. type Mat1 a = Mat N1 N1 a type Mat2 a = Mat N2 N2 a type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a +-- | Type synonym for row vectors expressed as 1-by-n matrices. +type Row n a = Mat N1 n a + +-- Type synonyms for 1-by-n row "vectors". +type Row1 a = Row N1 a +type Row2 a = Row N2 a +type Row3 a = Row N3 a +type Row4 a = Row N4 a +type Row5 a = Row N5 a + +-- | Type synonym for column vectors expressed as n-by-1 matrices. +type Col n a = Mat n N1 a + +-- Type synonyms for n-by-1 column "vectors". +type Col1 a = Col N1 a +type Col2 a = Col N2 a +type Col3 a = Col N3 a +type Col4 a = Col N4 a +type Col5 a = Col N5 a + instance (Eq a) => Eq (Mat m n a) where -- | Compare a row at a time. -- @@ -146,6 +173,14 @@ row :: Mat m n a -> Int -> (Vec n a) row (Mat rows) i = rows ! i +-- | Return the @i@th row of @m@ as a matrix. Unsafe. +row' :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a +row' m i = + construct lambda + where + lambda _ j = m !!! (i, j) + + -- | Return the @j@th column of @m@. Unsafe. column :: Mat m n a -> Int -> (Vec m a) column (Mat rows) j = @@ -154,6 +189,12 @@ column (Mat rows) j = element = flip (!) +-- | Return the @j@th column of @m@ as a matrix. Unsafe. +column' :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a +column' m j = + construct lambda + where + lambda i _ = m !!! (i, j) -- | Transpose @m@; switch it's columns and its rows. This is a dirty @@ -196,8 +237,6 @@ symmetric m = -- entries in the matrix. The i,j entry of the resulting matrix will -- have the value returned by lambda i j. -- --- TODO: Don't cheat with fromList. --- -- Examples: -- -- >>> let lambda i j = i + j @@ -206,14 +245,24 @@ symmetric m = -- construct :: forall m n a. (Arity m, Arity n) => (Int -> Int -> a) -> Mat m n a -construct lambda = Mat rows +construct lambda = Mat $ generate make_row where - -- The arity trick is used in Data.Vector.Fixed.length. - imax = (arity (undefined :: m)) - 1 - jmax = (arity (undefined :: n)) - 1 - row' i = V.fromList [ lambda i j | j <- [0..jmax] ] - rows = V.fromList [ row' i | i <- [0..imax] ] + make_row :: Int -> Vec n a + make_row i = generate (lambda i) + +-- | Create an identity matrix with the right dimensions. +-- +-- Examples: +-- +-- >>> identity_matrix :: Mat3 Int +-- ((1,0,0),(0,1,0),(0,0,1)) +-- >>> identity_matrix :: Mat3 Double +-- ((1.0,0.0,0.0),(0.0,1.0,0.0),(0.0,0.0,1.0)) +-- +identity_matrix :: (Arity m, Ring.C a) => Mat m m a +identity_matrix = + construct (\i j -> if i == j then (fromInteger 1) else (fromInteger 0)) -- | Given a positive-definite matrix @m@, computes the -- upper-triangular matrix @r@ with (transpose r)*r == m and all @@ -239,21 +288,26 @@ cholesky m = construct r -- | Returns True if the given matrix is upper-triangular, and False --- otherwise. +-- otherwise. The parameter @epsilon@ lets the caller choose a +-- tolerance. -- -- Examples: -- --- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> let m = fromList [[1,1],[1e-12,1]] :: Mat2 Double -- >>> is_upper_triangular m -- False --- --- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int --- >>> is_upper_triangular m +-- >>> is_upper_triangular' 1e-10 m -- True -- -is_upper_triangular :: (Eq a, Ring.C a, Arity m, Arity n) - => Mat m n a -> Bool -is_upper_triangular m = +-- TODO: +-- +-- 1. Don't cheat with lists. +-- +is_upper_triangular' :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) + => a -- ^ The tolerance @epsilon@. + -> Mat m n a + -> Bool +is_upper_triangular' epsilon m = and $ concat results where results = [[ test i j | i <- [0..(nrows m)-1]] | j <- [0..(ncols m)-1] ] @@ -261,11 +315,36 @@ is_upper_triangular m = test :: Int -> Int -> Bool test i j | i <= j = True - | otherwise = m !!! (i,j) == 0 + -- use "less than or equal to" so zero is a valid epsilon + | otherwise = abs (m !!! (i,j)) <= epsilon + + +-- | Returns True if the given matrix is upper-triangular, and False +-- otherwise. A specialized version of 'is_upper_triangular\'' with +-- @epsilon = 0@. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int +-- >>> is_upper_triangular m +-- False +-- +-- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int +-- >>> is_upper_triangular m +-- True +-- +-- TODO: +-- +-- 1. The Ord constraint is too strong here, Eq would suffice. +-- +is_upper_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) + => Mat m n a -> Bool +is_upper_triangular = is_upper_triangular' 0 -- | Returns True if the given matrix is lower-triangular, and False --- otherwise. +-- otherwise. This is a specialized version of 'is_lower_triangular\'' +-- with @epsilon = 0@. -- -- Examples: -- @@ -277,8 +356,9 @@ is_upper_triangular m = -- >>> is_lower_triangular m -- False -- -is_lower_triangular :: (Eq a, +is_lower_triangular :: (Ord a, Ring.C a, + Absolute.C a, Arity m, Arity n) => Mat m n a @@ -286,6 +366,29 @@ is_lower_triangular :: (Eq a, is_lower_triangular = is_upper_triangular . transpose +-- | Returns True if the given matrix is lower-triangular, and False +-- otherwise. The parameter @epsilon@ lets the caller choose a +-- tolerance. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,1e-12],[1,1]] :: Mat2 Double +-- >>> is_lower_triangular m +-- False +-- >>> is_lower_triangular' 1e-12 m +-- True +-- +is_lower_triangular' :: (Ord a, + Ring.C a, + Absolute.C a, + Arity m, + Arity n) + => a -- ^ The tolerance @epsilon@. + -> Mat m n a + -> Bool +is_lower_triangular' epsilon = (is_upper_triangular' epsilon) . transpose + + -- | Returns True if the given matrix is triangular, and False -- otherwise. -- @@ -303,8 +406,9 @@ is_lower_triangular = is_upper_triangular . transpose -- >>> is_triangular m -- False -- -is_triangular :: (Eq a, +is_triangular :: (Ord a, Ring.C a, + Absolute.C a, Arity m, Arity n) => Mat m n a @@ -340,13 +444,22 @@ class (Eq a, Ring.C a) => Determined p a where determinant :: (p a) -> a instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where - determinant m = m !!! (0,0) - -instance (Eq a, Ring.C a, Arity m) => Determined (Mat m m) a where - determinant _ = undefined + determinant (Mat rows) = (V.head . V.head) rows -instance (Eq a, Ring.C a, Arity n) +instance (Ord a, + Ring.C a, + Absolute.C a, + Arity n, + Determined (Mat (S n) (S n)) a) => Determined (Mat (S (S n)) (S (S n))) a where + -- | The recursive definition with a special-case for triangular matrices. + -- + -- Examples: + -- + -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int + -- >>> determinant m + -- -1 + -- determinant m | is_triangular m = product [ m !!! (i,i) | i <- [0..(nrows m)-1] ] | otherwise = determinant_recursive @@ -356,13 +469,12 @@ instance (Eq a, Ring.C a, Arity n) det_minor i j = determinant (minor m i j) determinant_recursive = - sum [ (-1)^(1+(toInteger j)) NP.* (m' 0 j) NP.* (det_minor 0 j) + sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (det_minor 0 j) | j <- [0..(ncols m)-1] ] --- | Matrix multiplication. Our 'Num' instance doesn't define one, and --- we need additional restrictions on the result type anyway. +-- | Matrix multiplication. -- -- Examples: -- @@ -408,11 +520,10 @@ instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where instance (Algebraic.C a, ToRational.C a, - Arity m, - Arity n) - => Normed (Mat (S m) (S n) a) where - -- | Generic p-norms. The usual norm in R^n is (norm_p 2). We treat - -- all matrices as big vectors. + Arity m) + => Normed (Mat (S m) N1 a) where + -- | Generic p-norms for vectors in R^n that are represented as nx1 + -- matrices. -- -- Examples: -- @@ -423,7 +534,7 @@ instance (Algebraic.C a, -- 5.0 -- norm_p p (Mat rows) = - (root p') $ sum [(fromRational' $ toRational x)^p' | x <- xs] + (root p') $ sum [fromRational' (toRational x)^p' | x <- xs] where p' = toInteger p xs = concat $ V.toList $ V.map V.toList rows @@ -440,7 +551,26 @@ instance (Algebraic.C a, fromRational' $ toRational $ V.maximum $ V.map V.maximum rows - +-- | Compute the Frobenius norm of a matrix. This essentially treats +-- the matrix as one long vector containing all of its entries (in +-- any order, it doesn't matter). +-- +-- Examples: +-- +-- >>> let m = fromList [[1, 2, 3],[4,5,6],[7,8,9]] :: Mat3 Double +-- >>> frobenius_norm m == sqrt 285 +-- True +-- +-- >>> let m = fromList [[1, -1, 1],[-1,1,-1],[1,-1,1]] :: Mat3 Double +-- >>> frobenius_norm m == 3 +-- True +-- +frobenius_norm :: (Algebraic.C a, Ring.C a) => Mat m n a -> a +frobenius_norm (Mat rows) = + sqrt $ element_sum $ V.map row_sum rows + where + -- | Square and add up the entries of a row. + row_sum = element_sum . V.map (^2) -- Vector helpers. We want it to be easy to create low-dimension @@ -462,24 +592,24 @@ instance (Algebraic.C a, -- >>> fixed_point g eps u0 -- ((1.0728549599342185),(1.0820591495686167)) -- -vec1d :: (a) -> Mat N1 N1 a +vec1d :: (a) -> Col1 a vec1d (x) = Mat (mk1 (mk1 x)) -vec2d :: (a,a) -> Mat N2 N1 a +vec2d :: (a,a) -> Col2 a vec2d (x,y) = Mat (mk2 (mk1 x) (mk1 y)) -vec3d :: (a,a,a) -> Mat N3 N1 a +vec3d :: (a,a,a) -> Col3 a vec3d (x,y,z) = Mat (mk3 (mk1 x) (mk1 y) (mk1 z)) -vec4d :: (a,a,a,a) -> Mat N4 N1 a +vec4d :: (a,a,a,a) -> Col4 a vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) -vec5d :: (a,a,a,a,a) -> Mat N5 N1 a +vec5d :: (a,a,a,a,a) -> Col5 a vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) -- Since we commandeered multiplication, we need to create 1x1 -- matrices in order to multiply things. -scalar :: a -> Mat N1 N1 a +scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) dot :: (RealRing.C a, n ~ N1, m ~ S t, Arity t) @@ -512,3 +642,128 @@ angle v1 v2 = where theta = (recip norms) NP.* (v1 `dot` v2) norms = (norm v1) NP.* (norm v2) + + +-- | Retrieve the diagonal elements of the given matrix as a \"column +-- vector,\" i.e. a m-by-1 matrix. We require the matrix to be +-- square to avoid ambiguity in the return type which would ideally +-- have dimension min(m,n) supposing an m-by-n matrix. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> diagonal m +-- ((1),(5),(9)) +-- +diagonal :: (Arity m) => Mat m m a -> Col m a +diagonal matrix = + construct lambda + where + lambda i _ = matrix !!! (i,i) + + +-- | Given a square @matrix@, return a new matrix of the same size +-- containing only the on-diagonal entries of @matrix@. The +-- off-diagonal entries are set to zero. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> diagonal_part m +-- ((1,0,0),(0,5,0),(0,0,9)) +-- +diagonal_part :: (Arity m, Ring.C a) + => Mat m m a + -> Mat m m a +diagonal_part matrix = + construct lambda + where + lambda i j = if i == j then matrix !!! (i,j) else 0 + + +-- | Given a square @matrix@, return a new matrix of the same size +-- containing only the on-diagonal and below-diagonal entries of +-- @matrix@. The above-diagonal entries are set to zero. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> lt_part m +-- ((1,0,0),(4,5,0),(7,8,9)) +-- +lt_part :: (Arity m, Ring.C a) + => Mat m m a + -> Mat m m a +lt_part matrix = + construct lambda + where + lambda i j = if i >= j then matrix !!! (i,j) else 0 + + +-- | Given a square @matrix@, return a new matrix of the same size +-- containing only the below-diagonal entries of @matrix@. The on- +-- and above-diagonal entries are set to zero. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> lt_part_strict m +-- ((0,0,0),(4,0,0),(7,8,0)) +-- +lt_part_strict :: (Arity m, Ring.C a) + => Mat m m a + -> Mat m m a +lt_part_strict matrix = + construct lambda + where + lambda i j = if i > j then matrix !!! (i,j) else 0 + + +-- | Given a square @matrix@, return a new matrix of the same size +-- containing only the on-diagonal and above-diagonal entries of +-- @matrix@. The below-diagonal entries are set to zero. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> ut_part m +-- ((1,2,3),(0,5,6),(0,0,9)) +-- +ut_part :: (Arity m, Ring.C a) + => Mat m m a + -> Mat m m a +ut_part = transpose . lt_part . transpose + + +-- | Given a square @matrix@, return a new matrix of the same size +-- containing only the above-diagonal entries of @matrix@. The on- +-- and below-diagonal entries are set to zero. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> ut_part_strict m +-- ((0,2,3),(0,0,6),(0,0,0)) +-- +ut_part_strict :: (Arity m, Ring.C a) + => Mat m m a + -> Mat m m a +ut_part_strict = transpose . lt_part_strict . transpose + + +-- | Compute the trace of a square matrix, the sum of the elements +-- which lie on its diagonal. We require the matrix to be +-- square to avoid ambiguity in the return type which would ideally +-- have dimension min(m,n) supposing an m-by-n matrix. +-- +-- Examples: +-- +-- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int +-- >>> trace m +-- 15 +-- +trace :: (Arity m, Ring.C a) => Mat m m a -> a +trace matrix = + let (Mat rows) = diagonal matrix + in + element_sum $ V.map V.head rows