{-# LANGUAGE RebindableSyntax #-} {-# LANGUAGE ScopedTypeVariables #-} -- | Stuff for which I'm too lazy to come up with a decent name. module Misc where import NumericPrelude import Algebra.Field ( C ) import Algebra.RealRing ( C ) import Algebra.ToInteger ( C ) -- | Partition the interval [@a@, @b@] into @n@ subintervals, which we -- then return as a list of pairs. -- -- Examples: -- -- >>> partition 1 (-1) 1 -- [(-1.0,1.0)] -- -- >>> partition 4 (-1) 1 -- [(-1.0,-0.5),(-0.5,0.0),(0.0,0.5),(0.5,1.0)] -- partition :: forall a b. (Algebra.Field.C a, Algebra.ToInteger.C b, Enum b) => b -- ^ The number of subintervals to use, @n@ -> a -- ^ The \"left\" endpoint of the interval, @a@ -> a -- ^ The \"right\" endpoint of the interval, @b@ -> [(a,a)] -- Somebody asked for zero subintervals? Ok. partition 0 _ _ = [] partition n x y | n < 0 = error "partition: asked for a negative number of subintervals" | otherwise = [ (xi, xj) | k <- [0..n-1], let k' = fromIntegral k :: a, let xi = x + k'*h, let xj = x + (k'+1)*h ] where coerced_n = fromIntegral $ toInteger n :: a h = (y-x)/coerced_n -- | Compute the unit roundoff (machine epsilon) for this machine. We -- find the largest number epsilon such that 1+epsilon <= 1. If you -- request anything other than a Float or Double from this, expect -- to wait a while. -- unit_roundoff :: forall a. (Algebra.RealRing.C a, Algebra.Field.C a) => a unit_roundoff = head [ 1/2^(k-1) | k <- [0..], 1 + 1/(2^k) <= (1::a) ]