{-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE RebindableSyntax #-} -- | Boxed matrices; that is, boxed m-vectors of boxed n-vectors. We -- assume that the underlying representation is -- Data.Vector.Fixed.Boxed.Vec for simplicity. It was tried in -- generality and failed. -- module Linear.Matrix where import Data.List (intercalate) import Data.Vector.Fixed ( (!), N1, N2, N3, N4, N5, S, Z, generate, mk1, mk2, mk3, mk4, mk5 ) import qualified Data.Vector.Fixed as V ( and, fromList, head, ifoldl, imap, map, maximum, replicate, toList, zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) import Linear.Vector ( Vec, delete, element_sum ) import Normed ( Normed(..) ) import NumericPrelude hiding ( (*), abs ) import qualified NumericPrelude as NP ( (*) ) import qualified Algebra.Absolute as Absolute ( C ) import Algebra.Absolute ( abs ) import qualified Algebra.Additive as Additive ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) import Algebra.Algebraic ( root ) import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Module as Module ( C ) import qualified Algebra.RealRing as RealRing ( C ) import qualified Algebra.ToRational as ToRational ( C ) import qualified Algebra.Transcendental as Transcendental ( C ) import qualified Prelude as P ( map ) -- | Our main matrix type. data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) -- Type synonyms for n-by-n matrices. type Mat1 a = Mat N1 N1 a type Mat2 a = Mat N2 N2 a type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a -- | Type synonym for row vectors expressed as 1-by-n matrices. type Row n a = Mat N1 n a -- Type synonyms for 1-by-n row "vectors". type Row1 a = Row N1 a type Row2 a = Row N2 a type Row3 a = Row N3 a type Row4 a = Row N4 a type Row5 a = Row N5 a -- | Type synonym for column vectors expressed as n-by-1 matrices. type Col n a = Mat n N1 a -- Type synonyms for n-by-1 column "vectors". type Col1 a = Col N1 a type Col2 a = Col N2 a type Col3 a = Col N3 a type Col4 a = Col N4 a type Col5 a = Col N5 a -- We need a big column for Gaussian quadrature. type N10 = S (S (S (S (S N5)))) type Col10 a = Col N10 a instance (Eq a) => Eq (Mat m n a) where -- | Compare a row at a time. -- -- Examples: -- -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> let m2 = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> let m3 = fromList [[5,6],[7,8]] :: Mat2 Int -- >>> m1 == m2 -- True -- >>> m1 == m3 -- False -- (Mat rows1) == (Mat rows2) = V.and $ V.zipWith comp rows1 rows2 where -- Compare a row, one column at a time. comp row1 row2 = V.and (V.zipWith (==) row1 row2) instance (Show a) => Show (Mat m n a) where -- | Display matrices and vectors as ordinary tuples. This is poor -- practice, but these results are primarily displayed -- interactively and convenience trumps correctness (said the guy -- who insists his vector lengths be statically checked at -- compile-time). -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> show m -- ((1,2),(3,4)) -- show (Mat rows) = "(" ++ (intercalate "," (V.toList row_strings)) ++ ")" where row_strings = V.map show_vector rows show_vector v1 = "(" ++ (intercalate "," element_strings) ++ ")" where v1l = V.toList v1 element_strings = P.map show v1l -- | Convert a matrix to a nested list. toList :: Mat m n a -> [[a]] toList (Mat rows) = map V.toList (V.toList rows) -- | Create a matrix from a nested list. fromList :: (Arity m, Arity n) => [[a]] -> Mat m n a fromList vs = Mat (V.fromList $ map V.fromList vs) -- | Unsafe indexing. Much faster than the safe indexing. (!!!) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> a (!!!) (Mat rows) (i, j) = (rows ! i) ! j -- | Safe indexing. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> m !!? (-1,-1) -- Nothing -- >>> m !!? (-1,0) -- Nothing -- >>> m !!? (-1,1) -- Nothing -- >>> m !!? (0,-1) -- Nothing -- >>> m !!? (0,0) -- Just 1 -- >>> m !!? (0,1) -- Just 2 -- >>> m !!? (1,-1) -- Nothing -- >>> m !!? (1,0) -- Just 3 -- >>> m !!? (1,1) -- Just 4 -- >>> m !!? (2,-1) -- Nothing -- >>> m !!? (2,0) -- Nothing -- >>> m !!? (2,1) -- Nothing -- >>> m !!? (2,2) -- Nothing -- (!!?) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> Maybe a (!!?) matrix idx = ifoldl2 f Nothing matrix where f k l found cur = if (k,l) == idx then (Just cur) else found -- | The number of rows in the matrix. nrows :: forall m n a. (Arity m) => Mat m n a -> Int nrows _ = arity (undefined :: m) -- | The number of columns in the first row of the -- matrix. Implementation stolen from Data.Vector.Fixed.length. ncols :: forall m n a. (Arity n) => Mat m n a -> Int ncols _ = arity (undefined :: n) -- | Return the @i@th row of @m@ as a matrix. Unsafe. row :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a row m i = construct lambda where lambda _ j = m !!! (i, j) -- | Return the @j@th column of @m@ as a matrix. Unsafe. column :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a column m j = construct lambda where lambda i _ = m !!! (i, j) -- | Transpose @m@; switch it's columns and its rows. This is a dirty -- implementation, but I don't see a better way. -- -- TODO: Don't cheat with fromList. -- -- Examples: -- -- >>> let m = fromList [[1,2], [3,4]] :: Mat2 Int -- >>> transpose m -- ((1,3),(2,4)) -- transpose :: (Arity m, Arity n) => Mat m n a -> Mat n m a transpose matrix = construct lambda where lambda i j = matrix !!! (j,i) -- | Is @m@ symmetric? -- -- Examples: -- -- >>> let m1 = fromList [[1,2], [2,1]] :: Mat2 Int -- >>> symmetric m1 -- True -- -- >>> let m2 = fromList [[1,2], [3,1]] :: Mat2 Int -- >>> symmetric m2 -- False -- symmetric :: (Eq a, Arity m) => Mat m m a -> Bool symmetric m = m == (transpose m) -- | Construct a new matrix from a function @lambda@. The function -- @lambda@ should take two parameters i,j corresponding to the -- entries in the matrix. The i,j entry of the resulting matrix will -- have the value returned by lambda i j. -- -- Examples: -- -- >>> let lambda i j = i + j -- >>> construct lambda :: Mat3 Int -- ((0,1,2),(1,2,3),(2,3,4)) -- construct :: forall m n a. (Arity m, Arity n) => (Int -> Int -> a) -> Mat m n a construct lambda = Mat $ generate make_row where make_row :: Int -> Vec n a make_row i = generate (lambda i) -- | Create an identity matrix with the right dimensions. -- -- Examples: -- -- >>> identity_matrix :: Mat3 Int -- ((1,0,0),(0,1,0),(0,0,1)) -- >>> identity_matrix :: Mat3 Double -- ((1.0,0.0,0.0),(0.0,1.0,0.0),(0.0,0.0,1.0)) -- identity_matrix :: (Arity m, Ring.C a) => Mat m m a identity_matrix = construct (\i j -> if i == j then (fromInteger 1) else (fromInteger 0)) -- | Given a positive-definite matrix @m@, computes the -- upper-triangular matrix @r@ with (transpose r)*r == m and all -- values on the diagonal of @r@ positive. -- -- Examples: -- -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double -- >>> cholesky m1 -- ((4.47213595499958,-0.22360679774997896),(0.0,4.466542286825459)) -- >>> (transpose (cholesky m1)) * (cholesky m1) -- ((20.000000000000004,-1.0),(-1.0,20.0)) -- cholesky :: forall m n a. (Algebraic.C a, Arity m, Arity n) => (Mat m n a) -> (Mat m n a) cholesky m = construct r where r :: Int -> Int -> a r i j | i == j = sqrt(m !!! (i,j) - sum [(r k i)^2 | k <- [0..i-1]]) | i < j = (((m !!! (i,j)) - sum [(r k i) NP.* (r k j) | k <- [0..i-1]]))/(r i i) | otherwise = 0 -- | Returns True if the given matrix is upper-triangular, and False -- otherwise. The parameter @epsilon@ lets the caller choose a -- tolerance. -- -- Examples: -- -- >>> let m = fromList [[1,1],[1e-12,1]] :: Mat2 Double -- >>> is_upper_triangular m -- False -- >>> is_upper_triangular' 1e-10 m -- True -- -- TODO: -- -- 1. Don't cheat with lists. -- is_upper_triangular' :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => a -- ^ The tolerance @epsilon@. -> Mat m n a -> Bool is_upper_triangular' epsilon m = and $ concat results where results = [[ test i j | i <- [0..(nrows m)-1]] | j <- [0..(ncols m)-1] ] test :: Int -> Int -> Bool test i j | i <= j = True -- use "less than or equal to" so zero is a valid epsilon | otherwise = abs (m !!! (i,j)) <= epsilon -- | Returns True if the given matrix is upper-triangular, and False -- otherwise. A specialized version of 'is_upper_triangular\'' with -- @epsilon = 0@. -- -- Examples: -- -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int -- >>> is_upper_triangular m -- False -- -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int -- >>> is_upper_triangular m -- True -- -- TODO: -- -- 1. The Ord constraint is too strong here, Eq would suffice. -- is_upper_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => Mat m n a -> Bool is_upper_triangular = is_upper_triangular' 0 -- | Returns True if the given matrix is lower-triangular, and False -- otherwise. This is a specialized version of 'is_lower_triangular\'' -- with @epsilon = 0@. -- -- Examples: -- -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int -- >>> is_lower_triangular m -- True -- -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int -- >>> is_lower_triangular m -- False -- is_lower_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => Mat m n a -> Bool is_lower_triangular = is_upper_triangular . transpose -- | Returns True if the given matrix is lower-triangular, and False -- otherwise. The parameter @epsilon@ lets the caller choose a -- tolerance. -- -- Examples: -- -- >>> let m = fromList [[1,1e-12],[1,1]] :: Mat2 Double -- >>> is_lower_triangular m -- False -- >>> is_lower_triangular' 1e-12 m -- True -- is_lower_triangular' :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => a -- ^ The tolerance @epsilon@. -> Mat m n a -> Bool is_lower_triangular' epsilon = (is_upper_triangular' epsilon) . transpose -- | Returns True if the given matrix is triangular, and False -- otherwise. -- -- Examples: -- -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int -- >>> is_triangular m -- True -- -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int -- >>> is_triangular m -- True -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> is_triangular m -- False -- is_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => Mat m n a -> Bool is_triangular m = is_upper_triangular m || is_lower_triangular m -- | Return the (i,j)th minor of m. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> minor m 0 0 :: Mat2 Int -- ((5,6),(8,9)) -- >>> minor m 1 1 :: Mat2 Int -- ((1,3),(7,9)) -- minor :: (m ~ S r, n ~ S t, Arity r, Arity t) => Mat m n a -> Int -> Int -> Mat r t a minor (Mat rows) i j = m where rows' = delete rows i m = Mat $ V.map ((flip delete) j) rows' class (Eq a, Ring.C a) => Determined p a where determinant :: (p a) -> a instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where determinant (Mat rows) = (V.head . V.head) rows instance (Ord a, Ring.C a, Absolute.C a, Arity n, Determined (Mat (S n) (S n)) a) => Determined (Mat (S (S n)) (S (S n))) a where -- | The recursive definition with a special-case for triangular matrices. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> determinant m -- -1 -- determinant m | is_triangular m = product [ m !!! (i,i) | i <- [0..(nrows m)-1] ] | otherwise = determinant_recursive where m' i j = m !!! (i,j) det_minor i j = determinant (minor m i j) determinant_recursive = sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (det_minor 0 j) | j <- [0..(ncols m)-1] ] -- | Matrix multiplication. -- -- Examples: -- -- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat N2 N3 Int -- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat N3 N2 Int -- >>> m1 * m2 -- ((22,28),(49,64)) -- infixl 7 * (*) :: (Ring.C a, Arity m, Arity n, Arity p) => Mat m n a -> Mat n p a -> Mat m p a (*) m1 m2 = construct lambda where lambda i j = sum [(m1 !!! (i,k)) NP.* (m2 !!! (k,j)) | k <- [0..(ncols m1)-1] ] instance (Ring.C a, Arity m, Arity n) => Additive.C (Mat m n a) where (Mat rows1) + (Mat rows2) = Mat $ V.zipWith (V.zipWith (+)) rows1 rows2 (Mat rows1) - (Mat rows2) = Mat $ V.zipWith (V.zipWith (-)) rows1 rows2 zero = Mat (V.replicate $ V.replicate (fromInteger 0)) instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat m n a) where -- The first * is ring multiplication, the second is matrix -- multiplication. m1 * m2 = m1 * m2 instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where -- We can multiply a matrix by a scalar of the same type as its -- elements. x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows instance (Algebraic.C a, ToRational.C a, Arity m) => Normed (Mat (S m) N1 a) where -- | Generic p-norms for vectors in R^n that are represented as nx1 -- matrices. -- -- Examples: -- -- >>> let v1 = vec2d (3,4) -- >>> norm_p 1 v1 -- 7.0 -- >>> norm_p 2 v1 -- 5.0 -- norm_p p (Mat rows) = (root p') $ sum [fromRational' (toRational x)^p' | x <- xs] where p' = toInteger p xs = concat $ V.toList $ V.map V.toList rows -- | The infinity norm. -- -- Examples: -- -- >>> let v1 = vec3d (1,5,2) -- >>> norm_infty v1 -- 5 -- norm_infty (Mat rows) = fromRational' $ toRational $ V.maximum $ V.map V.maximum rows -- | Compute the Frobenius norm of a matrix. This essentially treats -- the matrix as one long vector containing all of its entries (in -- any order, it doesn't matter). -- -- Examples: -- -- >>> let m = fromList [[1, 2, 3],[4,5,6],[7,8,9]] :: Mat3 Double -- >>> frobenius_norm m == sqrt 285 -- True -- -- >>> let m = fromList [[1, -1, 1],[-1,1,-1],[1,-1,1]] :: Mat3 Double -- >>> frobenius_norm m == 3 -- True -- frobenius_norm :: (Algebraic.C a, Ring.C a) => Mat m n a -> a frobenius_norm (Mat rows) = sqrt $ element_sum $ V.map row_sum rows where -- | Square and add up the entries of a row. row_sum = element_sum . V.map (^2) -- Vector helpers. We want it to be easy to create low-dimension -- column vectors, which are nx1 matrices. -- | Convenient constructor for 2D vectors. -- -- Examples: -- -- >>> import Roots.Simple -- >>> let fst m = m !!! (0,0) -- >>> let snd m = m !!! (1,0) -- >>> let h = 0.5 :: Double -- >>> let g1 m = 1.0 + h NP.* exp(-((fst m)^2))/(1.0 + (snd m)^2) -- >>> let g2 m = 0.5 + h NP.* atan((fst m)^2 + (snd m)^2) -- >>> let g u = vec2d ((g1 u), (g2 u)) -- >>> let u0 = vec2d (1.0, 1.0) -- >>> let eps = 1/(10^9) -- >>> fixed_point g eps u0 -- ((1.0728549599342185),(1.0820591495686167)) -- vec1d :: (a) -> Col1 a vec1d (x) = Mat (mk1 (mk1 x)) vec2d :: (a,a) -> Col2 a vec2d (x,y) = Mat (mk2 (mk1 x) (mk1 y)) vec3d :: (a,a,a) -> Col3 a vec3d (x,y,z) = Mat (mk3 (mk1 x) (mk1 y) (mk1 z)) vec4d :: (a,a,a,a) -> Col4 a vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) vec5d :: (a,a,a,a,a) -> Col5 a vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) -- Since we commandeered multiplication, we need to create 1x1 -- matrices in order to multiply things. scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) dot :: (RealRing.C a, n ~ N1, m ~ S t, Arity t) => Mat m n a -> Mat m n a -> a v1 `dot` v2 = ((transpose v1) * v2) !!! (0, 0) -- | The angle between @v1@ and @v2@ in Euclidean space. -- -- Examples: -- -- >>> let v1 = vec2d (1.0, 0.0) -- >>> let v2 = vec2d (0.0, 1.0) -- >>> angle v1 v2 == pi/2.0 -- True -- angle :: (Transcendental.C a, RealRing.C a, n ~ N1, m ~ S t, Arity t, ToRational.C a) => Mat m n a -> Mat m n a -> a angle v1 v2 = acos theta where theta = (recip norms) NP.* (v1 `dot` v2) norms = (norm v1) NP.* (norm v2) -- | Retrieve the diagonal elements of the given matrix as a \"column -- vector,\" i.e. a m-by-1 matrix. We require the matrix to be -- square to avoid ambiguity in the return type which would ideally -- have dimension min(m,n) supposing an m-by-n matrix. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> diagonal m -- ((1),(5),(9)) -- diagonal :: (Arity m) => Mat m m a -> Col m a diagonal matrix = construct lambda where lambda i _ = matrix !!! (i,i) -- | Given a square @matrix@, return a new matrix of the same size -- containing only the on-diagonal entries of @matrix@. The -- off-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> diagonal_part m -- ((1,0,0),(0,5,0),(0,0,9)) -- diagonal_part :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a diagonal_part matrix = construct lambda where lambda i j = if i == j then matrix !!! (i,j) else 0 -- | Given a square @matrix@, return a new matrix of the same size -- containing only the on-diagonal and below-diagonal entries of -- @matrix@. The above-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> lt_part m -- ((1,0,0),(4,5,0),(7,8,9)) -- lt_part :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a lt_part matrix = construct lambda where lambda i j = if i >= j then matrix !!! (i,j) else 0 -- | Given a square @matrix@, return a new matrix of the same size -- containing only the below-diagonal entries of @matrix@. The on- -- and above-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> lt_part_strict m -- ((0,0,0),(4,0,0),(7,8,0)) -- lt_part_strict :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a lt_part_strict matrix = construct lambda where lambda i j = if i > j then matrix !!! (i,j) else 0 -- | Given a square @matrix@, return a new matrix of the same size -- containing only the on-diagonal and above-diagonal entries of -- @matrix@. The below-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> ut_part m -- ((1,2,3),(0,5,6),(0,0,9)) -- ut_part :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a ut_part = transpose . lt_part . transpose -- | Given a square @matrix@, return a new matrix of the same size -- containing only the above-diagonal entries of @matrix@. The on- -- and below-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> ut_part_strict m -- ((0,2,3),(0,0,6),(0,0,0)) -- ut_part_strict :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a ut_part_strict = transpose . lt_part_strict . transpose -- | Compute the trace of a square matrix, the sum of the elements -- which lie on its diagonal. We require the matrix to be -- square to avoid ambiguity in the return type which would ideally -- have dimension min(m,n) supposing an m-by-n matrix. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> trace m -- 15 -- trace :: (Arity m, Ring.C a) => Mat m m a -> a trace matrix = let (Mat rows) = diagonal matrix in element_sum $ V.map V.head rows -- | Zip together two column matrices. -- -- Examples: -- -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int -- >>> colzip m1 m2 -- (((1,1)),((1,2)),((1,3))) -- colzip :: Arity m => Col m a -> Col m a -> Col m (a,a) colzip c1 c2 = construct lambda where lambda i j = (c1 !!! (i,j), c2 !!! (i,j)) -- | Zip together two column matrices using the supplied function. -- -- Examples: -- -- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer -- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer -- >>> colzipwith (^) c1 c2 -- ((1),(32),(729)) -- colzipwith :: Arity m => (a -> a -> b) -> Col m a -> Col m a -> Col m b colzipwith f c1 c2 = construct lambda where lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j)) -- | Map a function over a matrix of any dimensions. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> map2 (^2) m -- ((1,4),(9,16)) -- map2 :: (a -> b) -> Mat m n a -> Mat m n b map2 f (Mat rows) = Mat $ V.map g rows where g = V.map f -- | Fold over the entire matrix passing the coordinates @i@ and @j@ -- (of the row/column) to the accumulation function. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m -- 18 -- ifoldl2 :: forall a b m n. (Int -> Int -> b -> a -> b) -> b -> Mat m n a -> b ifoldl2 f initial (Mat rows) = V.ifoldl row_function initial rows where -- | The order that we need this in (so that @g idx@ makes sense) -- is a little funny. So that we don't need to pass weird -- functions into ifoldl2, we swap the second and third -- arguments of @f@ calling the result @g@. g :: Int -> b -> Int -> a -> b g w x y = f w y x row_function :: b -> Int -> Vec n a -> b row_function rowinit idx r = V.ifoldl (g idx) rowinit r -- | Map a function over a matrix of any dimensions, passing the -- coordinates @i@ and @j@ to the function @f@. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> imap2 (\i j _ -> i+j) m -- ((0,1),(1,2)) -- imap2 :: (Int -> Int -> a -> b) -> Mat m n a -> Mat m n b imap2 f (Mat rows) = Mat $ V.imap g rows where g i = V.imap (f i)