{-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE NoMonomorphismRestriction #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE RebindableSyntax #-} -- | Boxed matrices; that is, boxed m-vectors of boxed n-vectors. We -- assume that the underlying representation is -- Data.Vector.Fixed.Boxed.Vec for simplicity. It was tried in -- generality and failed. -- module Linear.Matrix where import Data.List (intercalate) import Data.Vector.Fixed ( (!), generate, mk0, mk1, mk2, mk3, mk4, mk5 ) import qualified Data.Vector.Fixed as V ( and, foldl, fromList, head, ifoldl, ifoldr, imap, map, replicate, reverse, toList, zipWith ) import Data.Vector.Fixed.Cont ( Arity, arity ) import Linear.Vector ( Vec, delete ) import Naturals import Normed ( Normed(..) ) -- We want the "max" that works on Ord, not the one that only works on -- Bool/Integer from the Lattice class! import NumericPrelude hiding ( (*), abs, max) import qualified NumericPrelude as NP ( (*) ) import qualified Algebra.Absolute as Absolute ( C ) import Algebra.Absolute ( abs ) import qualified Algebra.Additive as Additive ( C ) import qualified Algebra.Algebraic as Algebraic ( C ) import Algebra.Algebraic ( root ) import qualified Algebra.Field as Field ( C ) import qualified Algebra.Ring as Ring ( C ) import qualified Algebra.Module as Module ( C ) import qualified Algebra.RealRing as RealRing ( C ) import qualified Algebra.ToRational as ToRational ( C ) import qualified Algebra.Transcendental as Transcendental ( C ) import qualified Prelude as P ( map, max) -- | Our main matrix type. data Mat m n a = (Arity m, Arity n) => Mat (Vec m (Vec n a)) -- Type synonyms for n-by-n matrices. type Mat0 a = Mat Z Z a type Mat1 a = Mat N1 N1 a type Mat2 a = Mat N2 N2 a type Mat3 a = Mat N3 N3 a type Mat4 a = Mat N4 N4 a type Mat5 a = Mat N5 N5 a type Mat6 a = Mat N6 N6 a type Mat7 a = Mat N7 N7 a -- * Type synonyms for 1-by-n row "vectors". -- | Type synonym for row vectors expressed as 1-by-n matrices. type Row n a = Mat N1 n a type Row1 a = Row N1 a type Row2 a = Row N2 a type Row3 a = Row N3 a type Row4 a = Row N4 a type Row5 a = Row N5 a -- * Type synonyms for n-by-1 column "vectors". -- | Type synonym for column vectors expressed as n-by-1 matrices. type Col n a = Mat n N1 a type Col0 a = Col Z a type Col1 a = Col N1 a type Col2 a = Col N2 a type Col3 a = Col N3 a type Col4 a = Col N4 a type Col5 a = Col N5 a type Col6 a = Col N6 a type Col7 a = Col N7 a type Col8 a = Col N8 a type Col9 a = Col N9 a type Col10 a = Col N10 a type Col11 a = Col N11 a type Col12 a = Col N12 a type Col13 a = Col N13 a type Col14 a = Col N14 a type Col15 a = Col N15 a type Col16 a = Col N16 a type Col17 a = Col N17 a type Col18 a = Col N18 a type Col19 a = Col N19 a type Col20 a = Col N20 a type Col21 a = Col N21 a type Col22 a = Col N22 a type Col23 a = Col N23 a type Col24 a = Col N24 a type Col25 a = Col N25 a type Col26 a = Col N26 a type Col27 a = Col N27 a type Col28 a = Col N28 a type Col29 a = Col N29 a type Col30 a = Col N30 a type Col31 a = Col N31 a type Col32 a = Col N32 a instance (Eq a) => Eq (Mat m n a) where -- | Compare a row at a time. -- -- Examples: -- -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> let m2 = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> let m3 = fromList [[5,6],[7,8]] :: Mat2 Int -- >>> m1 == m2 -- True -- >>> m1 == m3 -- False -- (Mat rows_one) == (Mat rows_two) = V.and $ V.zipWith comp rows_one rows_two where -- Compare a row, one column at a time. comp row1 row2 = V.and (V.zipWith (==) row1 row2) instance (Show a) => Show (Mat m n a) where -- | Display matrices and vectors as ordinary tuples. This is poor -- practice, but these results are primarily displayed -- interactively and convenience trumps correctness (said the guy -- who insists his vector lengths be statically checked at -- compile-time). -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> show m -- ((1,2),(3,4)) -- show (Mat rows) = "(" ++ (intercalate "," (V.toList row_strings)) ++ ")" where row_strings = V.map show_vector rows show_vector v1 = "(" ++ (intercalate "," element_strings) ++ ")" where v1l = V.toList v1 element_strings = P.map show v1l -- | Convert a matrix to a nested list. toList :: Mat m n a -> [[a]] toList (Mat rows) = map V.toList (V.toList rows) -- | Create a matrix from a nested list. fromList :: (Arity m, Arity n) => [[a]] -> Mat m n a fromList vs = Mat (V.fromList $ map V.fromList vs) -- | Unsafe indexing. Much faster than the safe indexing. (!!!) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> a (!!!) (Mat rows) (i, j) = (rows ! i) ! j -- | Safe indexing. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> m !!? (-1,-1) -- Nothing -- >>> m !!? (-1,0) -- Nothing -- >>> m !!? (-1,1) -- Nothing -- >>> m !!? (0,-1) -- Nothing -- >>> m !!? (0,0) -- Just 1 -- >>> m !!? (0,1) -- Just 2 -- >>> m !!? (1,-1) -- Nothing -- >>> m !!? (1,0) -- Just 3 -- >>> m !!? (1,1) -- Just 4 -- >>> m !!? (2,-1) -- Nothing -- >>> m !!? (2,0) -- Nothing -- >>> m !!? (2,1) -- Nothing -- >>> m !!? (2,2) -- Nothing -- (!!?) :: (Arity m, Arity n) => Mat m n a -> (Int, Int) -> Maybe a (!!?) matrix idx = ifoldl2 f Nothing matrix where f k l found cur = if (k,l) == idx then (Just cur) else found -- | The number of rows in the matrix. nrows :: forall m n a. (Arity m) => Mat m n a -> Int nrows _ = arity (undefined :: m) -- | The number of columns in the first row of the -- matrix. Implementation stolen from Data.Vector.Fixed.length. ncols :: forall m n a. (Arity n) => Mat m n a -> Int ncols _ = arity (undefined :: n) -- | Return the @i@th row of @m@ as a matrix. Unsafe. row :: (Arity m, Arity n) => Mat m n a -> Int -> Row n a row m i = construct lambda where lambda _ j = m !!! (i, j) -- | Return the @j@th column of @m@ as a matrix. Unsafe. column :: (Arity m, Arity n) => Mat m n a -> Int -> Col m a column m j = construct lambda where lambda i _ = m !!! (i, j) -- | Transpose @m@; switch it's columns and its rows. This is a dirty -- implementation, but I don't see a better way. -- -- TODO: Don't cheat with fromList. -- -- Examples: -- -- >>> let m = fromList [[1,2], [3,4]] :: Mat2 Int -- >>> transpose m -- ((1,3),(2,4)) -- transpose :: (Arity m, Arity n) => Mat m n a -> Mat n m a transpose matrix = construct lambda where lambda i j = matrix !!! (j,i) -- | Is @m@ symmetric? -- -- Examples: -- -- >>> let m1 = fromList [[1,2], [2,1]] :: Mat2 Int -- >>> symmetric m1 -- True -- -- >>> let m2 = fromList [[1,2], [3,1]] :: Mat2 Int -- >>> symmetric m2 -- False -- symmetric :: (Eq a, Arity m) => Mat m m a -> Bool symmetric m = m == (transpose m) -- | Construct a new matrix from a function @lambda@. The function -- @lambda@ should take two parameters i,j corresponding to the -- entries in the matrix. The i,j entry of the resulting matrix will -- have the value returned by lambda i j. -- -- Examples: -- -- >>> let lambda i j = i + j -- >>> construct lambda :: Mat3 Int -- ((0,1,2),(1,2,3),(2,3,4)) -- construct :: forall m n a. (Arity m, Arity n) => (Int -> Int -> a) -> Mat m n a construct lambda = Mat $ generate make_row where make_row :: Int -> Vec n a make_row i = generate (lambda i) -- | Create an identity matrix with the right dimensions. -- -- Examples: -- -- >>> identity_matrix :: Mat3 Int -- ((1,0,0),(0,1,0),(0,0,1)) -- >>> identity_matrix :: Mat3 Double -- ((1.0,0.0,0.0),(0.0,1.0,0.0),(0.0,0.0,1.0)) -- identity_matrix :: (Arity m, Ring.C a) => Mat m m a identity_matrix = construct (\i j -> if i == j then (fromInteger 1) else (fromInteger 0)) -- | Given a positive-definite matrix @m@, computes the -- upper-triangular matrix @r@ with (transpose r)*r == m and all -- values on the diagonal of @r@ positive. -- -- Examples: -- -- >>> let m1 = fromList [[20,-1], [-1,20]] :: Mat2 Double -- >>> let r = cholesky m1 -- >>> frobenius_norm ((transpose r)*r - m1) < 1e-10 -- True -- >>> is_upper_triangular r -- True -- -- >>> let k1 = [6, -3, 0, 0, 0, 0, 0] :: [Double] -- >>> let k2 = [-3, 10.5, -7.5, 0, 0, 0, 0] :: [Double] -- >>> let k3 = [0, -7.5, 12.5, 0, 0, 0, 0] :: [Double] -- >>> let k4 = [0, 0, 0, 6, 0, 0, 0] :: [Double] -- >>> let k5 = [0, 0, 0, 0, 6, 0, 0] :: [Double] -- >>> let k6 = [0, 0, 0, 0, 0, 6, 0] :: [Double] -- >>> let k7 = [0, 0, 0, 0, 0, 0, 15] :: [Double] -- >>> let big_K = fromList [k1,k2,k3,k4,k5,k6,k7] :: Mat N7 N7 Double -- -- >>> let e1 = [2.449489742783178,0,0,0,0,0,0] :: [Double] -- >>> let e2 = [-1.224744871391589,3,0,0,0,0,0] :: [Double] -- >>> let e3 = [0,-5/2,5/2,0,0,0,0] :: [Double] -- >>> let e4 = [0,0,0,2.449489742783178,0,0,0] :: [Double] -- >>> let e5 = [0,0,0,0,2.449489742783178,0,0] :: [Double] -- >>> let e6 = [0,0,0,0,0,2.449489742783178,0] :: [Double] -- >>> let e7 = [0,0,0,0,0,0,3.872983346207417] :: [Double] -- >>> let expected = fromList [e1,e2,e3,e4,e5,e6,e7] :: Mat N7 N7 Double -- -- >>> let r = cholesky big_K -- >>> frobenius_norm (r - (transpose expected)) < 1e-12 -- True -- cholesky :: forall m a. (Algebraic.C a, Arity m) => (Mat m m a) -> (Mat m m a) cholesky m = ifoldl2 f zero m where f :: Int -> Int -> (Mat m m a) -> a -> (Mat m m a) f i j cur_R _ = set_idx cur_R (i,j) (r cur_R i j) r :: (Mat m m a) -> Int -> Int -> a r cur_R i j | i == j = sqrt(m !!! (i,j) - sum [(cur_R !!! (k,i))^2 | k <- [0..i-1]]) | i < j = (((m !!! (i,j)) - sum [(cur_R !!! (k,i)) NP.* (cur_R !!! (k,j)) | k <- [0..i-1]]))/(cur_R !!! (i,i)) | otherwise = 0 -- | Returns True if the given matrix is upper-triangular, and False -- otherwise. The parameter @epsilon@ lets the caller choose a -- tolerance. -- -- Examples: -- -- >>> let m = fromList [[1,1],[1e-12,1]] :: Mat2 Double -- >>> is_upper_triangular m -- False -- >>> is_upper_triangular' 1e-10 m -- True -- is_upper_triangular' :: forall m n a. (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => a -- ^ The tolerance @epsilon@. -> Mat m n a -> Bool is_upper_triangular' epsilon matrix = ifoldl2 f True matrix where f :: Int -> Int -> Bool -> a -> Bool f _ _ False _ = False f i j True x | i <= j = True -- use "less than or equal to" so zero is a valid epsilon | otherwise = abs x <= epsilon -- | Returns True if the given matrix is upper-triangular, and False -- otherwise. We don't delegate to the general -- 'is_upper_triangular'' here because it imposes additional -- typeclass constraints throughout the library. -- -- Examples: -- -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int -- >>> is_upper_triangular m -- False -- -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int -- >>> is_upper_triangular m -- True -- is_upper_triangular :: forall m n a. (Eq a, Ring.C a, Arity m, Arity n) => Mat m n a -> Bool is_upper_triangular matrix = ifoldl2 f True matrix where f :: Int -> Int -> Bool -> a -> Bool f _ _ False _ = False f i j True x | i <= j = True | otherwise = x == 0 -- | Returns True if the given matrix is lower-triangular, and False -- otherwise. -- -- Examples: -- -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int -- >>> is_lower_triangular m -- True -- -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int -- >>> is_lower_triangular m -- False -- is_lower_triangular :: (Eq a, Ring.C a, Arity m, Arity n) => Mat m n a -> Bool is_lower_triangular = is_upper_triangular . transpose -- | Returns True if the given matrix is lower-triangular, and False -- otherwise. The parameter @epsilon@ lets the caller choose a -- tolerance. -- -- Examples: -- -- >>> let m = fromList [[1,1e-12],[1,1]] :: Mat2 Double -- >>> is_lower_triangular m -- False -- >>> is_lower_triangular' 1e-12 m -- True -- is_lower_triangular' :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => a -- ^ The tolerance @epsilon@. -> Mat m n a -> Bool is_lower_triangular' epsilon = (is_upper_triangular' epsilon) . transpose -- | Returns True if the given matrix is triangular, and False -- otherwise. -- -- Examples: -- -- >>> let m = fromList [[1,0],[1,1]] :: Mat2 Int -- >>> is_triangular m -- True -- -- >>> let m = fromList [[1,2],[0,3]] :: Mat2 Int -- >>> is_triangular m -- True -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> is_triangular m -- False -- is_triangular :: (Ord a, Ring.C a, Absolute.C a, Arity m, Arity n) => Mat m n a -> Bool is_triangular m = is_upper_triangular m || is_lower_triangular m -- | Delete the @i@th row and @j@th column from the matrix. The name -- \"preminor\" is made up, but is meant to signify that this is -- usually used in the computationof a minor. A minor is simply the -- determinant of a preminor in that case. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> preminor m 0 0 :: Mat2 Int -- ((5,6),(8,9)) -- >>> preminor m 1 1 :: Mat2 Int -- ((1,3),(7,9)) -- preminor :: (Arity m, Arity n) => Mat (S m) (S n) a -> Int -> Int -> Mat m n a preminor (Mat rows) i j = m where rows' = delete rows i m = Mat $ V.map ((flip delete) j) rows' -- | Compute the i,jth minor of a @matrix@. -- -- Examples: -- -- >>> let m1 = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Double -- >>> minor m1 1 1 -- -12.0 -- minor :: (Arity m, Determined (Mat m m) a) => Mat (S m) (S m) a -> Int -> Int -> a minor matrix i j = determinant (preminor matrix i j) class (Eq a, Ring.C a) => Determined p a where determinant :: (p a) -> a instance (Eq a, Ring.C a) => Determined (Mat (S Z) (S Z)) a where determinant = unscalar instance (Ord a, Ring.C a, Absolute.C a, Arity n, Determined (Mat (S n) (S n)) a) => Determined (Mat (S (S n)) (S (S n))) a where -- | The recursive definition with a special-case for triangular matrices. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> determinant m -- -1 -- determinant m | is_triangular m = product [ m !!! (i,i) | i <- [0..(nrows m)-1] ] | otherwise = determinant_recursive where m' i j = m !!! (i,j) determinant_recursive = sum [ (-1)^(toInteger j) NP.* (m' 0 j) NP.* (minor m 0 j) | j <- [0..(ncols m)-1] ] -- | Matrix multiplication. -- -- Examples: -- -- >>> let m1 = fromList [[1,2,3], [4,5,6]] :: Mat N2 N3 Int -- >>> let m2 = fromList [[1,2],[3,4],[5,6]] :: Mat N3 N2 Int -- >>> m1 * m2 -- ((22,28),(49,64)) -- infixl 7 * (*) :: (Ring.C a, Arity m, Arity n, Arity p) => Mat (S m) (S n) a -> Mat (S n) (S p) a -> Mat (S m) (S p) a (*) m1 m2 = construct lambda where lambda i j = (transpose $ row m1 i) `dot` (column m2 j) instance (Ring.C a, Arity m, Arity n) => Additive.C (Mat m n a) where (Mat rows_one) + (Mat rows_two) = Mat $ V.zipWith (V.zipWith (+)) rows_one rows_two (Mat rows_one) - (Mat rows_two) = Mat $ V.zipWith (V.zipWith (-)) rows_one rows_two zero = Mat (V.replicate $ V.replicate (fromInteger 0)) instance (Ring.C a, Arity m, Arity n, m ~ n) => Ring.C (Mat (S m) (S n) a) where -- The first * is ring multiplication, the second is matrix -- multiplication. one = identity_matrix m1 * m2 = m1 * m2 instance (Ring.C a, Arity m, Arity n) => Module.C a (Mat m n a) where -- We can multiply a matrix by a scalar of the same type as its -- elements. x *> (Mat rows) = Mat $ V.map (V.map (NP.* x)) rows instance (Absolute.C a, Algebraic.C a, ToRational.C a, Arity m) => Normed (Col m a) where -- | Generic p-norms for vectors in R^m that are represented as m-by-1 -- matrices. -- -- Examples: -- -- >>> let v1 = vec2d (3,4) -- >>> norm_p 1 v1 -- 7.0 -- >>> norm_p 2 v1 -- 5.0 -- -- >>> let v1 = vec2d (-1,1) :: Col2 Double -- >>> norm_p 1 v1 :: Double -- 2.0 -- -- >>> let v1 = vec0d :: Col0 Double -- >>> norm v1 -- 0.0 -- norm_p p (Mat rows) = (root p') $ sum [fromRational' (toRational $ abs x)^p' | x <- xs] where p' = toInteger p xs = concat $ V.toList $ V.map V.toList rows -- | The infinity norm. -- -- Examples: -- -- >>> let v1 = vec3d (1,5,2) -- >>> norm_infty v1 -- 5 -- norm_infty (Mat rows) = fromRational' $ toRational $ (V.foldl P.max 0) $ V.map (V.foldl P.max 0) rows -- | Compute the Frobenius norm of a matrix. This essentially treats -- the matrix as one long vector containing all of its entries (in -- any order, it doesn't matter). -- -- Examples: -- -- >>> let m = fromList [[1, 2, 3],[4,5,6],[7,8,9]] :: Mat3 Double -- >>> frobenius_norm m == sqrt 285 -- True -- -- >>> let m = fromList [[1, -1, 1],[-1,1,-1],[1,-1,1]] :: Mat3 Double -- >>> frobenius_norm m == 3 -- True -- frobenius_norm :: (Arity m, Arity n, Algebraic.C a, Ring.C a) => Mat m n a -> a frobenius_norm matrix = sqrt $ element_sum2 $ squares where squares = map2 (^2) matrix -- Vector helpers. We want it to be easy to create low-dimension -- column vectors, which are nx1 matrices. -- | Convenient constructor for 2D vectors. -- -- Examples: -- -- >>> import Roots.Simple -- >>> let fst m = m !!! (0,0) -- >>> let snd m = m !!! (1,0) -- >>> let h = 0.5 :: Double -- >>> let g1 m = 1.0 + h NP.* exp(-((fst m)^2))/(1.0 + (snd m)^2) -- >>> let g2 m = 0.5 + h NP.* atan((fst m)^2 + (snd m)^2) -- >>> let g u = vec2d ((g1 u), (g2 u)) -- >>> let u0 = vec2d (1.0, 1.0) -- >>> let eps = 1/(10^9) -- >>> fixed_point g eps u0 -- ((1.0728549599342185),(1.0820591495686167)) -- vec0d :: Col0 a vec0d = Mat mk0 vec1d :: (a) -> Col1 a vec1d (x) = Mat (mk1 (mk1 x)) vec2d :: (a,a) -> Col2 a vec2d (x,y) = Mat (mk2 (mk1 x) (mk1 y)) vec3d :: (a,a,a) -> Col3 a vec3d (x,y,z) = Mat (mk3 (mk1 x) (mk1 y) (mk1 z)) vec4d :: (a,a,a,a) -> Col4 a vec4d (w,x,y,z) = Mat (mk4 (mk1 w) (mk1 x) (mk1 y) (mk1 z)) vec5d :: (a,a,a,a,a) -> Col5 a vec5d (v,w,x,y,z) = Mat (mk5 (mk1 v) (mk1 w) (mk1 x) (mk1 y) (mk1 z)) -- Since we commandeered multiplication, we need to create 1x1 -- matrices in order to multiply things. scalar :: a -> Mat1 a scalar x = Mat (mk1 (mk1 x)) -- Get the scalar value out of a 1x1 matrix. unscalar :: Mat1 a -> a unscalar (Mat rows) = V.head $ V.head rows dot :: (Ring.C a, Arity m) => Col (S m) a -> Col (S m) a -> a v1 `dot` v2 = element_sum2 $ zipwith2 (NP.*) v1 v2 -- | The angle between @v1@ and @v2@ in Euclidean space. -- -- Examples: -- -- >>> let v1 = vec2d (1.0, 0.0) -- >>> let v2 = vec2d (0.0, 1.0) -- >>> angle v1 v2 == pi/2.0 -- True -- angle :: (Transcendental.C a, RealRing.C a, m ~ S t, Arity t, ToRational.C a) => Col m a -> Col m a -> a angle v1 v2 = acos theta where theta = (recip norms) NP.* (v1 `dot` v2) norms = (norm v1) NP.* (norm v2) -- | Retrieve the diagonal elements of the given matrix as a \"column -- vector,\" i.e. a m-by-1 matrix. We require the matrix to be -- square to avoid ambiguity in the return type which would ideally -- have dimension min(m,n) supposing an m-by-n matrix. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> diagonal m -- ((1),(5),(9)) -- diagonal :: (Arity m) => Mat m m a -> Col m a diagonal matrix = construct lambda where lambda i _ = matrix !!! (i,i) -- | Given a square @matrix@, return a new matrix of the same size -- containing only the on-diagonal entries of @matrix@. The -- off-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> diagonal_part m -- ((1,0,0),(0,5,0),(0,0,9)) -- diagonal_part :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a diagonal_part matrix = construct lambda where lambda i j = if i == j then matrix !!! (i,j) else 0 -- | Given a square @matrix@, return a new matrix of the same size -- containing only the on-diagonal and below-diagonal entries of -- @matrix@. The above-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> lt_part m -- ((1,0,0),(4,5,0),(7,8,9)) -- lt_part :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a lt_part matrix = construct lambda where lambda i j = if i >= j then matrix !!! (i,j) else 0 -- | Given a square @matrix@, return a new matrix of the same size -- containing only the below-diagonal entries of @matrix@. The on- -- and above-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> lt_part_strict m -- ((0,0,0),(4,0,0),(7,8,0)) -- lt_part_strict :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a lt_part_strict matrix = construct lambda where lambda i j = if i > j then matrix !!! (i,j) else 0 -- | Given a square @matrix@, return a new matrix of the same size -- containing only the on-diagonal and above-diagonal entries of -- @matrix@. The below-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> ut_part m -- ((1,2,3),(0,5,6),(0,0,9)) -- ut_part :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a ut_part = transpose . lt_part . transpose -- | Given a square @matrix@, return a new matrix of the same size -- containing only the above-diagonal entries of @matrix@. The on- -- and below-diagonal entries are set to zero. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> ut_part_strict m -- ((0,2,3),(0,0,6),(0,0,0)) -- ut_part_strict :: (Arity m, Ring.C a) => Mat m m a -> Mat m m a ut_part_strict = transpose . lt_part_strict . transpose -- | Compute the trace of a square matrix, the sum of the elements -- which lie on its diagonal. We require the matrix to be -- square to avoid ambiguity in the return type which would ideally -- have dimension min(m,n) supposing an m-by-n matrix. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> trace m -- 15 -- trace :: (Arity m, Ring.C a) => Mat m m a -> a trace = element_sum2 . diagonal -- | Zip together two matrices. -- -- TODO: don't cheat with construct (map V.zips instead). -- -- Examples: -- -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int -- >>> zip2 m1 m2 -- (((1,1)),((1,2)),((1,3))) -- -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int -- >>> zip2 m1 m2 -- (((1,1),(2,1)),((3,1),(4,1))) -- zip2 :: (Arity m, Arity n) => Mat m n a -> Mat m n b -> Mat m n (a,b) zip2 m1 m2 = construct lambda where lambda i j = (m1 !!! (i,j), m2 !!! (i,j)) -- | Zip together three matrices. -- -- TODO: don't cheat with construct (map V.zips instead). -- -- Examples: -- -- >>> let m1 = fromList [[1],[1],[1]] :: Col3 Int -- >>> let m2 = fromList [[1],[2],[3]] :: Col3 Int -- >>> let m3 = fromList [[4],[5],[6]] :: Col3 Int -- >>> zip2three m1 m2 m3 -- (((1,1,4)),((1,2,5)),((1,3,6))) -- -- >>> let m1 = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> let m2 = fromList [[1,1],[1,1]] :: Mat2 Int -- >>> let m3 = fromList [[8,2],[6,3]] :: Mat2 Int -- >>> zip2three m1 m2 m3 -- (((1,1,8),(2,1,2)),((3,1,6),(4,1,3))) -- zip2three :: (Arity m, Arity n) => Mat m n a -> Mat m n a -> Mat m n a -> Mat m n (a,a,a) zip2three m1 m2 m3 = construct lambda where lambda i j = (m1 !!! (i,j), m2 !!! (i,j), m3 !!! (i,j)) -- | Zip together two matrices using the supplied function. -- -- Examples: -- -- >>> let c1 = fromList [[1],[2],[3]] :: Col3 Integer -- >>> let c2 = fromList [[4],[5],[6]] :: Col3 Integer -- >>> zipwith2 (^) c1 c2 -- ((1),(32),(729)) -- zipwith2 :: (Arity m, Arity n) => (a -> b -> c) -> Mat m n a -> Mat m n b -> Mat m n c zipwith2 f c1 c2 = construct lambda where lambda i j = f (c1 !!! (i,j)) (c2 !!! (i,j)) -- | Map a function over a matrix of any dimensions. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> map2 (^2) m -- ((1,4),(9,16)) -- map2 :: (a -> b) -> Mat m n a -> Mat m n b map2 f (Mat rows) = Mat $ V.map g rows where g = V.map f -- | Fold over the entire matrix passing the coordinates @i@ and @j@ -- (of the row/column) to the accumulation function. The fold occurs -- from top-left to bottom-right. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> ifoldl2 (\i j cur _ -> cur + i + j) 0 m -- 18 -- ifoldl2 :: forall a b m n. (Int -> Int -> b -> a -> b) -> b -> Mat m n a -> b ifoldl2 f initial (Mat rows) = V.ifoldl row_function initial rows where -- | The order that we need this in (so that @g idx@ makes sense) -- is a little funny. So that we don't need to pass weird -- functions into ifoldl2, we swap the second and third -- arguments of @f@ calling the result @g@. g :: Int -> b -> Int -> a -> b g w x y = f w y x row_function :: b -> Int -> Vec n a -> b row_function rowinit idx r = V.ifoldl (g idx) rowinit r -- | Left fold over the entries of a matrix (top-left to bottom-right). -- foldl2 :: forall a b m n. (b -> a -> b) -> b -> Mat m n a -> b foldl2 f initial matrix = -- Use the index fold but ignore the index arguments. let g _ _ = f in ifoldl2 g initial matrix -- | Fold over the entire matrix passing the coordinates @i@ and @j@ -- (of the row/column) to the accumulation function. The fold occurs -- from bottom-right to top-left. -- -- The order of the arguments in the supplied function are different -- from those in V.ifoldr; we keep them similar to ifoldl2. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> ifoldr2 (\i j cur _ -> cur + i + j) 0 m -- 18 -- ifoldr2 :: forall a b m n. (Int -> Int -> b -> a -> b) -> b -> Mat m n a -> b ifoldr2 f initial (Mat rows) = V.ifoldr row_function initial rows where -- | Swap the order of arguments in @f@ so that it agrees with the -- @f@ passed to ifoldl2. g :: Int -> Int -> a -> b -> b g w x y z = f w x z y row_function :: Int -> Vec n a -> b -> b row_function idx r rowinit = V.ifoldr (g idx) rowinit r -- | Map a function over a matrix of any dimensions, passing the -- coordinates @i@ and @j@ to the function @f@. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> imap2 (\i j _ -> i+j) m -- ((0,1),(1,2)) -- imap2 :: (Int -> Int -> a -> b) -> Mat m n a -> Mat m n b imap2 f (Mat rows) = Mat $ V.imap g rows where g i = V.imap (f i) -- | Reverse the order of elements in a matrix. -- -- Examples: -- -- >>> let m1 = fromList [[1,2,3]] :: Row3 Int -- >>> reverse2 m1 -- ((3,2,1)) -- -- >>> let m1 = vec3d (1,2,3 :: Int) -- >>> reverse2 m1 -- ((3),(2),(1)) -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> reverse2 m -- ((9,8,7),(6,5,4),(3,2,1)) -- reverse2 :: (Arity m, Arity n) => Mat m n a -> Mat m n a reverse2 (Mat rows) = Mat $ V.reverse $ V.map V.reverse rows -- | Unsafely set the (i,j) element of the given matrix. -- -- Examples: -- -- >>> let m = fromList [[1,2,3],[4,5,6],[7,8,9]] :: Mat3 Int -- >>> set_idx m (1,1) 17 -- ((1,2,3),(4,17,6),(7,8,9)) -- set_idx :: forall m n a. (Arity m, Arity n) => Mat m n a -> (Int, Int) -> a -> Mat m n a set_idx matrix (i,j) newval = imap2 updater matrix where updater :: Int -> Int -> a -> a updater k l existing = if k == i && l == j then newval else existing -- | Compute the i,jth cofactor of the given @matrix@. This simply -- premultiplues the i,jth minor by (-1)^(i+j). cofactor :: (Arity m, Determined (Mat m m) a) => Mat (S m) (S m) a -> Int -> Int -> a cofactor matrix i j = (-1)^(toInteger i + toInteger j) NP.* (minor matrix i j) -- | Compute the inverse of a matrix using cofactor expansion -- (generalized Cramer's rule). -- -- Examples: -- -- >>> let m1 = fromList [[37,22],[17,54]] :: Mat2 Double -- >>> let e1 = [54/1624, -22/1624] :: [Double] -- >>> let e2 = [-17/1624, 37/1624] :: [Double] -- >>> let expected = fromList [e1, e2] :: Mat2 Double -- >>> let actual = inverse m1 -- >>> frobenius_norm (actual - expected) < 1e-12 -- True -- inverse :: (Arity m, Determined (Mat (S m) (S m)) a, Determined (Mat m m) a, Field.C a) => Mat (S m) (S m) a -> Mat (S m) (S m) a inverse matrix = (1 / (determinant matrix)) *> (transpose $ construct lambda) where lambda i j = cofactor matrix i j -- | Retrieve the rows of a matrix as a column matrix. If the given -- matrix is m-by-n, the result would be an m-by-1 column whose -- entries are 1-by-n row matrices. -- -- Examples: -- -- >>> let m = fromList [[1,2],[3,4]] :: Mat2 Int -- >>> (rows2 m) !!! (0,0) -- ((1,2)) -- >>> (rows2 m) !!! (1,0) -- ((3,4)) -- rows2 :: (Arity m, Arity n) => Mat m n a -> Col m (Row n a) rows2 (Mat rows) = Mat $ V.map (mk1. Mat . mk1) rows -- | Sum the elements of a matrix. -- -- Examples: -- -- >>> let m = fromList [[1,-1],[3,4]] :: Mat2 Int -- >>> element_sum2 m -- 7 -- element_sum2 :: (Arity m, Arity n, Additive.C a) => Mat m n a -> a element_sum2 = foldl2 (+) zero