module Integration.Trapezoid where -- | Partition the interval [@a@, @b@] into @n@ subintervals, which we -- then return as a list of pairs. partition :: (RealFrac a, Integral b) => b -- ^ The number of subintervals to use, @n@ -> a -- ^ The \"left\" endpoint of the interval, @a@ -> a -- ^ The \"right\" endpoint of the interval, @b@ -> [(a,a)] -- Somebody asked for zero subintervals? Ok. partition 0 _ _ = [] partition n a b | n < 0 = error "partition: asked for a negative number of subintervals" | otherwise = [ (xi, xj) | k <- [0..n-1], let k' = fromIntegral k, let xi = a + k'*h, let xj = a + (k'+1)*h ] where h = fromRational $ (toRational (b-a))/(toRational n) -- | Use the trapezoid rule to numerically integrate @f@ over the -- interval [@a@, @b@]. -- -- Examples: -- -- >>> let f x = x -- >>> trapezoid_1 f (-1) 1 -- 0.0 -- -- >>> let f x = x^3 -- >>> trapezoid_1 f (-1) 1 -- 0.0 -- -- >>> let f x = 1 -- >>> trapezoid_1 f (-1) 1 -- 2.0 -- -- >>> let f x = x^2 -- >>> trapezoid_1 f (-1) 1 -- 2.0 -- trapezoid_1 :: (RealFrac a, Fractional b, Num b) => (a -> b) -- ^ The function @f@ -> a -- ^ The \"left\" endpoint, @a@ -> a -- ^ The \"right\" endpoint, @b@ -> b trapezoid_1 f a b = (((f a) + (f b)) / 2) * (fromRational $ toRational (b - a)) -- | Use the composite trapezoid tule to numerically integrate @f@ -- over @n@ subintervals of [@a@, @b@]. -- -- Examples: -- -- >>> let f x = x^2 -- >>> let area = trapezoid 1000 f (-1) 1 -- abs (area - (2/3)) < 0.00001 -- True -- -- >>> let area = trapezoid 1000 sin (-1) 1 -- >>> abs (area - 2) < 0.00001 -- True -- trapezoid :: (RealFrac a, Fractional b, Num b, Integral c) => c -- ^ The number of subintervals to use, @n@ -> (a -> b) -- ^ The function @f@ -> a -- ^ The \"left\" endpoint, @a@ -> a -- ^ The \"right\" endpoint, @b@ -> b trapezoid n f a b = sum $ map trapezoid_pairs pieces where pieces = partition n a b -- Convert the trapezoid_1 function into one that takes pairs -- (a,b) instead of individual arguments 'a' and 'b'. trapezoid_pairs = uncurry (trapezoid_1 f)