{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeFamilies #-} module FixedVector where import Data.List (intercalate) import Data.Vector.Fixed as V import Data.Vector.Fixed.Boxed import Normed -- | The Vn newtype simply wraps (Vector v a) so that we avoid -- undecidable instances. newtype Vn a = Vn a instance (Show a, Vector v a) => Show (Vn (v a)) where -- | Display vectors as ordinary tuples. This is poor practice, but -- these results are primarily displayed interactively and -- convenience trumps correctness (said the guy who insists his -- vector lengths be statically checked at compile-time). -- -- Examples: -- -- >>> let v1 = make2d (1,2) -- >>> show v1 -- (1,2) -- show (Vn v1) = "(" ++ (intercalate "," element_strings) ++ ")" where v1l = toList v1 element_strings = Prelude.map show v1l -- | We would really like to say, "anything that is a vector of -- equatable things is itself equatable." The 'Vn' class -- allows us to express this without a GHC battle. -- -- Examples: -- -- >>> let v1 = make2d (1,2) -- >>> let v2 = make2d (1,2) -- >>> let v3 = make2d (3,4) -- >>> v1 == v2 -- True -- >>> v1 == v3 -- False -- instance (Eq a, Vector v a, Vector v Bool) => Eq (Vn (v a)) where (Vn v1) == (Vn v2) = V.foldl (&&) True (V.zipWith (==) v1 v2) -- | The use of 'Num' here is of course incorrect (otherwise, we -- wouldn't have to throw errors). But it's really nice to be able -- to use normal addition/subtraction. instance (Num a, Vector v a) => Num (Vn (v a)) where -- | Componentwise addition. -- -- Examples: -- -- >>> let v1 = make2d (1,2) -- >>> let v2 = make2d (3,4) -- >>> v1 + v2 -- (4,6) -- (Vn v1) + (Vn v2) = Vn $ V.zipWith (+) v1 v2 -- | Componentwise subtraction. -- -- Examples: -- -- >>> let v1 = make2d (1,2) -- >>> let v2 = make2d (3,4) -- >>> v1 - v2 -- (-2,-2) -- (Vn v1) - (Vn v2) = Vn $ V.zipWith (-) v1 v2 -- | Create an n-vector whose components are all equal to the given -- integer. The result type must be specified since otherwise the -- length n would be unknown. -- -- Examples: -- -- >>> let v1 = fromInteger 17 :: Vn (Vec3 Int) -- (17,17,17) -- fromInteger x = Vn $ V.replicate (fromInteger x) (*) = error "multiplication of vectors is undefined" abs = error "absolute value of vectors is undefined" signum = error "signum of vectors is undefined" instance Functor Vn where fmap f (Vn v1) = Vn (f v1) instance (RealFloat a, Ord a, Vector v a) => Normed (Vn (v a)) where -- | The infinity norm. We don't use V.maximum here because it -- relies on a type constraint that the vector be non-empty and I -- don't know how to pattern match it away. -- -- Examples: -- -- >>> let v1 = make3d (1,5,2) -- >>> norm_infty v1 -- 5 -- norm_infty (Vn v1) = fromRational $ toRational $ V.foldl max 0 v1 -- | Generic p-norms. The usual norm in R^n is (norm_p 2). -- -- Examples: -- -- >>> let v1 = make2d (3,4) -- >>> norm_p 1 v1 -- 7.0 -- >>> norm_p 2 v1 -- 5.0 -- norm_p p (Vn v1) = fromRational $ toRational $ root $ V.sum $ V.map (exponentiate . abs) v1 where exponentiate = (** (fromIntegral p)) root = (** (recip (fromIntegral p))) -- | Dot (standard inner) product. -- -- Examples: -- -- >>> let v1 = make3d (1,2,3) -- >>> let v2 = make3d (4,5,6) -- >>> dot v1 v2 -- 32 -- dot :: (Num a, Vector v a) => Vn (v a) -> Vn (v a) -> a dot (Vn v1) (Vn v2) = V.sum $ V.zipWith (*) v1 v2 -- | The angle between @v1@ and @v2@ in Euclidean space. -- -- Examples: -- -- >>> let v1 = make2d (1.0, 0.0) -- >>> let v2 = make2d (0.0, 1.0) -- >>> angle v1 v2 == pi/2.0 -- True -- angle :: (RealFloat a, Vector v a) => Vn (v a) -> Vn (v a) -> a angle v1 v2 = acos theta where theta = (v1 `dot` v2) / norms norms = (norm_p (2 :: Integer) v1) * (norm_p (2 :: Integer) v2) -- | Convenience function for creating 2d vectors. -- -- Examples: -- -- >>> let v1 = make2d (1,2) -- >>> v1 -- (1,2) -- make2d :: forall a. (a,a) -> Vn (Vec2 a) make2d (x,y) = Vn v1 where v1 = vec $ con |> x |> y :: Vec2 a -- | Convenience function for creating 3d vectors. -- -- Examples: -- -- >>> let v1 = make3d (1,2,3) -- >>> v1 -- (1,2,3) -- make3d :: forall a. (a,a,a) -> Vn (Vec3 a) make3d (x,y,z) = Vn v1 where v1 = vec $ con |> x |> y |> z :: Vec3 a