X-Git-Url: http://gitweb.michael.orlitzky.com/?p=mjotex.git;a=blobdiff_plain;f=mjo-common.tex;h=6b357abdbec9b5cdd53dd4c037d2d2e67375432b;hp=e59920181ae51081530fbe92cfad47b87ba5d387;hb=HEAD;hpb=21149d05f0bf33baecfe002704f8dd3d939951e7 diff --git a/mjo-common.tex b/mjo-common.tex index e599201..ccb22da 100644 --- a/mjo-common.tex +++ b/mjo-common.tex @@ -1,51 +1,77 @@ % % Only the most commonly-used macros. Needed by everything else. % +\ifx\havemjocommon\undefined +\def\havemjocommon{1} -% Needed for \mathbb. -\usepackage{amsfonts} +\ifx\mathbb\undefined + \usepackage{amsfonts} +\fi -% Needed for \bigtimes. -\usepackage{mathtools} +\ifx\restriction\undefined + \usepackage{amssymb} +\fi -% Place the argument in matching left/right parntheses. -\providecommand*{\of}[1]{ \left({#1}\right) } +% Place the argument in matching left/right parentheses. +\newcommand*{\of}[1]{ \left({#1}\right) } % Group terms using parentheses. -\providecommand*{\qty}[1]{ \left({#1}\right) } +\newcommand*{\qty}[1]{ \left({#1}\right) } % Group terms using square brackets. -\providecommand*{\sqty}[1]{ \left[{#1}\right] } - -% Create a set from the given elements -\providecommand*{\set}[1]{\left\lbrace{#1}\right\rbrace} - -% A set comprehension, where the ``such that...'' bar is added -% automatically. The bar was chosen over a colon to avoid ambiguity -% with the L : V -> V notation. We can't leverage \set here because \middle -% needs \left and \right present. -\providecommand*{\setc}[2]{\left\lbrace{#1}\ \middle|\ {#2} \right\rbrace} +\newcommand*{\sqty}[1]{ \left[{#1}\right] } % A pair of things. -\providecommand*{\pair}[2]{ \left({#1},{#2}\right) } +\newcommand*{\pair}[2]{ \left({#1},{#2}\right) } % A triple of things. -\providecommand*{\triple}[3]{ \left({#1},{#2},{#3}\right) } - -% The Cartesian product of two things. -\providecommand*{\cartprod}[2]{ {#1}\times{#2} } - -% The Cartesian product of three things. -\providecommand*{\cartprodthree}[3]{ \cartprod{{#1}}{\cartprod{{#2}}{{#3}}} } - -% The direct sum of two things. -\providecommand*{\directsum}[2]{ {#1}\oplus{#2} } - -% The direct sum of three things. -\providecommand*{\directsumthree}[3]{ \directsum{#1}{\directsum{#2}{#3}} } +\newcommand*{\triple}[3]{ \left({#1},{#2},{#3}\right) } + +% A four-tuple of things. +\newcommand*{\quadruple}[4]{ \left({#1},{#2},{#3},{#4}\right) } + +% A five-tuple of things. +\newcommand*{\quintuple}[5]{ \left({#1},{#2},{#3},{#4},{#5}\right) } + +% A six-tuple of things. +\newcommand*{\sextuple}[6]{ \left({#1},{#2},{#3},{#4},{#5},{#6}\right) } + +% A seven-tuple of things. +\newcommand*{\septuple}[7]{ \left({#1},{#2},{#3},{#4},{#5},{#6},{#7}\right) } + +% A free-form tuple of things. Useful for when the exact number is not +% known, such as when \ldots will be stuck in the middle of the list, +% and when you don't want to think in column-vector terms, e.g. with +% elements of an abstract Cartesian product space. +\newcommand*{\tuple}[1]{ \left({#1}\right) } + +% The "least common multiple of" function. Takes a nonempty set of +% things that can be multiplied and ordered as its argument. Name +% chosen for synergy with \gcd, which *does* exist already. +\newcommand*{\lcm}[1]{ \operatorname{lcm}\of{{#1}} } +\ifdefined\newglossaryentry + \newglossaryentry{lcm}{ + name={\ensuremath{\lcm{X}}}, + description={the least common multiple of the elements of $X$}, + sort=l + } +\fi % The factorial operator. -\providecommand*{\factorial}[1]{ {#1}! } +\newcommand*{\factorial}[1]{ {#1}! } + +% Restrict the first argument (a function) to the second argument (a +% subset of that functions domain). Abused for polynomials to specify +% an associated function with a particular domain (also its codomain, +% in the case of univariate polynomials). +\newcommand*{\restrict}[2]{{#1}{\restriction}_{#2}} +\ifdefined\newglossaryentry + \newglossaryentry{restriction}{ + name={\ensuremath{\restrict{f}{X}}}, + description={the restriction of $f$ to $X$}, + sort=r + } +\fi % % Product spaces @@ -57,55 +83,84 @@ % % The natural n-space, N x N x N x ... x N. -\providecommand*{\Nn}[1][n]{ +\newcommand*{\Nn}[1][n]{ \mathbb{N}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi } +\ifdefined\newglossaryentry + \newglossaryentry{N}{ + name={\ensuremath{\Nn[1]}}, + description={the set of natural numbers}, + sort=N + } +\fi + % The integral n-space, Z x Z x Z x ... x Z. -\providecommand*{\Zn}[1][n]{ +\newcommand*{\Zn}[1][n]{ \mathbb{Z}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi } +\ifdefined\newglossaryentry + \newglossaryentry{Z}{ + name={\ensuremath{\Zn[1]}}, + description={the ring of integers}, + sort=Z + } +\fi + % The rational n-space, Q x Q x Q x ... x Q. -\providecommand*{\Qn}[1][n]{ +\newcommand*{\Qn}[1][n]{ \mathbb{Q}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi } +\ifdefined\newglossaryentry + \newglossaryentry{Q}{ + name={\ensuremath{\Qn[1]}}, + description={the field of rational numbers}, + sort=Q + } +\fi + % The real n-space, R x R x R x ... x R. -\providecommand*{\Rn}[1][n]{ +\newcommand*{\Rn}[1][n]{ \mathbb{R}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi } +\ifdefined\newglossaryentry + \newglossaryentry{R}{ + name={\ensuremath{\Rn[1]}}, + description={the field of real numbers}, + sort=R + } +\fi + + % The complex n-space, C x C x C x ... x C. -\providecommand*{\Cn}[1][n]{ +\newcommand*{\Cn}[1][n]{ \mathbb{C}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi } -% The space of real symmetric n-by-n matrices. -\providecommand*{\Sn}[1][n]{ - \mathcal{S}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi +\ifdefined\newglossaryentry + \newglossaryentry{C}{ + name={\ensuremath{\Cn[1]}}, + description={the field of complex numbers}, + sort=C + } +\fi + +% The n-dimensional product space of a generic field F. +\newcommand*{\Fn}[1][n]{ + \mathbb{F}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi } -% The space of complex Hermitian n-by-n matrices. -\providecommand*{\Hn}[1][n]{ - \mathcal{H}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi -} - -% -% Basic set operations -% - -% The union of its two arguments. -\providecommand*{\union}[2]{ {#1}\cup{#2} } +\ifdefined\newglossaryentry + \newglossaryentry{F}{ + name={\ensuremath{\Fn[1]}}, + description={a generic field}, + sort=F + } +\fi -% A three-argument union. -\providecommand*{\unionthree}[3]{ \union{\union{#1}{#2}}{#3} } - -% The intersection of its two arguments. -\providecommand*{\intersect}[2]{ {#1}\cap{#2} } - -% A three-argument intersection. -\providecommand*{\intersectthree}[3]{ \intersect{\intersect{#1}{#2}}{#3} } % An indexed arbitrary binary operation such as the union or % intersection of an infinite number of sets. The first argument is @@ -113,14 +168,20 @@ % argument is the lower index, for example k=1. The third argument is % the upper index, such as \infty. Finally the fourth argument should % contain the things (e.g. indexed sets) to be operated on. -\providecommand*{\binopmany}[4]{ +\newcommand*{\binopmany}[4]{ \mathchoice{ \underset{#2}{\overset{#3}{#1}}{#4} } { {#1}_{#2}^{#3}{#4} } { {#1}_{#2}^{#3}{#4} } { {#1}_{#2}^{#3}{#4} } } -\providecommand*{\intersectmany}[3]{ \binopmany{\bigcap}{#1}{#2}{#3} } -\providecommand*{\cartprodmany}[3]{ \binopmany{\bigtimes}{#1}{#2}{#3} } -\providecommand*{\directsummany}[3]{ \binopmany{\bigoplus}{#1}{#2}{#3} } -\providecommand*{\unionmany}[3]{ \binopmany{\bigcup}{#1}{#2}{#3} } + +% The four standard (UNLESS YOU'RE FRENCH) types of intervals along +% the real line. +\newcommand*{\intervaloo}[2]{ \left({#1},{#2}\right) } % open-open +\newcommand*{\intervaloc}[2]{ \left({#1},{#2}\right] } % open-closed +\newcommand*{\intervalco}[2]{ \left[{#1},{#2}\right) } % closed-open +\newcommand*{\intervalcc}[2]{ \left[{#1},{#2}\right] } % closed-closed + + +\fi