X-Git-Url: http://gitweb.michael.orlitzky.com/?p=mjotex.git;a=blobdiff_plain;f=mjo-common.tex;h=6b357abdbec9b5cdd53dd4c037d2d2e67375432b;hp=4df86a07a3a9d70cbe77a2bc62aeebc6e178ffd5;hb=HEAD;hpb=8e69093e71c6b82828dfe1570141e4dc1d485cfe diff --git a/mjo-common.tex b/mjo-common.tex index 4df86a0..ccb22da 100644 --- a/mjo-common.tex +++ b/mjo-common.tex @@ -1,23 +1,187 @@ % % Only the most commonly-used macros. Needed by everything else. % +\ifx\havemjocommon\undefined +\def\havemjocommon{1} -\usepackage{mathtools} +\ifx\mathbb\undefined + \usepackage{amsfonts} +\fi -% Place the argument in matching left/right parntheses. -\DeclarePairedDelimiter{\of}{ \lparen }{ \rparen } +\ifx\restriction\undefined + \usepackage{amssymb} +\fi -% Group terms using parentheses. -\newcommand*{\qty}[1]{ \left\lparen {#1} \right\rparen } +% Place the argument in matching left/right parentheses. +\newcommand*{\of}[1]{ \left({#1}\right) } -% Create a set from the given elements -\DeclarePairedDelimiter{\set}{ \lbrace }{ \rbrace } +% Group terms using parentheses. +\newcommand*{\qty}[1]{ \left({#1}\right) } -% A set comprehension, where the ``such that...'' bar is added -% automatically. The bar was chosen over a colon to avoid ambiguity -% with the L : V -> V notation. We can't leverage \set here because \middle -% needs \left and \right present. -\newcommand*{\setc}[2]{ \left\lbrace {#1}\ \middle|\ {#2} \right\rbrace } +% Group terms using square brackets. +\newcommand*{\sqty}[1]{ \left[{#1}\right] } % A pair of things. -\DeclarePairedDelimiterX{\pair}[2]{ \lparen }{ \rparen}{ {#1}, {#2} } +\newcommand*{\pair}[2]{ \left({#1},{#2}\right) } + +% A triple of things. +\newcommand*{\triple}[3]{ \left({#1},{#2},{#3}\right) } + +% A four-tuple of things. +\newcommand*{\quadruple}[4]{ \left({#1},{#2},{#3},{#4}\right) } + +% A five-tuple of things. +\newcommand*{\quintuple}[5]{ \left({#1},{#2},{#3},{#4},{#5}\right) } + +% A six-tuple of things. +\newcommand*{\sextuple}[6]{ \left({#1},{#2},{#3},{#4},{#5},{#6}\right) } + +% A seven-tuple of things. +\newcommand*{\septuple}[7]{ \left({#1},{#2},{#3},{#4},{#5},{#6},{#7}\right) } + +% A free-form tuple of things. Useful for when the exact number is not +% known, such as when \ldots will be stuck in the middle of the list, +% and when you don't want to think in column-vector terms, e.g. with +% elements of an abstract Cartesian product space. +\newcommand*{\tuple}[1]{ \left({#1}\right) } + +% The "least common multiple of" function. Takes a nonempty set of +% things that can be multiplied and ordered as its argument. Name +% chosen for synergy with \gcd, which *does* exist already. +\newcommand*{\lcm}[1]{ \operatorname{lcm}\of{{#1}} } +\ifdefined\newglossaryentry + \newglossaryentry{lcm}{ + name={\ensuremath{\lcm{X}}}, + description={the least common multiple of the elements of $X$}, + sort=l + } +\fi + +% The factorial operator. +\newcommand*{\factorial}[1]{ {#1}! } + +% Restrict the first argument (a function) to the second argument (a +% subset of that functions domain). Abused for polynomials to specify +% an associated function with a particular domain (also its codomain, +% in the case of univariate polynomials). +\newcommand*{\restrict}[2]{{#1}{\restriction}_{#2}} +\ifdefined\newglossaryentry + \newglossaryentry{restriction}{ + name={\ensuremath{\restrict{f}{X}}}, + description={the restriction of $f$ to $X$}, + sort=r + } +\fi + +% +% Product spaces +% +% All of the product spaces (for example, R^n) that follow default to +% an exponent of ``n'', but that exponent can be changed by providing +% it as an optional argument. If the exponent given is ``1'', then it +% will be omitted entirely. +% + +% The natural n-space, N x N x N x ... x N. +\newcommand*{\Nn}[1][n]{ + \mathbb{N}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi +} + +\ifdefined\newglossaryentry + \newglossaryentry{N}{ + name={\ensuremath{\Nn[1]}}, + description={the set of natural numbers}, + sort=N + } +\fi + +% The integral n-space, Z x Z x Z x ... x Z. +\newcommand*{\Zn}[1][n]{ + \mathbb{Z}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi +} + +\ifdefined\newglossaryentry + \newglossaryentry{Z}{ + name={\ensuremath{\Zn[1]}}, + description={the ring of integers}, + sort=Z + } +\fi + +% The rational n-space, Q x Q x Q x ... x Q. +\newcommand*{\Qn}[1][n]{ + \mathbb{Q}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi +} + +\ifdefined\newglossaryentry + \newglossaryentry{Q}{ + name={\ensuremath{\Qn[1]}}, + description={the field of rational numbers}, + sort=Q + } +\fi + +% The real n-space, R x R x R x ... x R. +\newcommand*{\Rn}[1][n]{ + \mathbb{R}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi +} + +\ifdefined\newglossaryentry + \newglossaryentry{R}{ + name={\ensuremath{\Rn[1]}}, + description={the field of real numbers}, + sort=R + } +\fi + + +% The complex n-space, C x C x C x ... x C. +\newcommand*{\Cn}[1][n]{ + \mathbb{C}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi +} + +\ifdefined\newglossaryentry + \newglossaryentry{C}{ + name={\ensuremath{\Cn[1]}}, + description={the field of complex numbers}, + sort=C + } +\fi + +% The n-dimensional product space of a generic field F. +\newcommand*{\Fn}[1][n]{ + \mathbb{F}\if\detokenize{#1}\detokenize{1}{}\else^{#1}\fi +} + +\ifdefined\newglossaryentry + \newglossaryentry{F}{ + name={\ensuremath{\Fn[1]}}, + description={a generic field}, + sort=F + } +\fi + + +% An indexed arbitrary binary operation such as the union or +% intersection of an infinite number of sets. The first argument is +% the operator symbol to use, such as \cup for a union. The second +% argument is the lower index, for example k=1. The third argument is +% the upper index, such as \infty. Finally the fourth argument should +% contain the things (e.g. indexed sets) to be operated on. +\newcommand*{\binopmany}[4]{ + \mathchoice{ \underset{#2}{\overset{#3}{#1}}{#4} } + { {#1}_{#2}^{#3}{#4} } + { {#1}_{#2}^{#3}{#4} } + { {#1}_{#2}^{#3}{#4} } +} + + +% The four standard (UNLESS YOU'RE FRENCH) types of intervals along +% the real line. +\newcommand*{\intervaloo}[2]{ \left({#1},{#2}\right) } % open-open +\newcommand*{\intervaloc}[2]{ \left({#1},{#2}\right] } % open-closed +\newcommand*{\intervalco}[2]{ \left[{#1},{#2}\right) } % closed-open +\newcommand*{\intervalcc}[2]{ \left[{#1},{#2}\right] } % closed-closed + + +\fi