X-Git-Url: http://gitweb.michael.orlitzky.com/?p=mjotex.git;a=blobdiff_plain;f=examples.tex;h=2d05431e2ceb2fcdcdf3314980f3348929a69ea8;hp=babc886abe26b31ef223cb783e2fa43d4d848d79;hb=HEAD;hpb=cab35094298c00d10035e926b64ff69df33393a5 diff --git a/examples.tex b/examples.tex index babc886..383cef2 100644 --- a/examples.tex +++ b/examples.tex @@ -39,7 +39,11 @@ If $R$ has a multiplicative identity (that is, a unit) element, then that element is denoted by $\unit{R}$. Its additive identity - element is $\zero{R}$. + element is $\zero{R}$. The stabilizer (or isotropy) + subgroup of $G$ that fixes $x$ is $\Stab{G}{x}$. + + If $I$ is an ideal, then $\variety{I}$ is the variety that + corresponds to it. \end{section} \begin{section}{Algorithm} @@ -57,7 +61,7 @@ \State{Rearrange $M$ randomly} \EndWhile{} - \Return{$M$} + \State{\Return{$M$}} \end{algorithmic} \end{algorithm} \end{section} @@ -79,7 +83,8 @@ The function $f$ applied to $x$ is $f\of{x}$, and the restriction of $f$ to a subset $X$ of its domain is $\restrict{f}{X}$. We can group terms like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - - d}}$. The tuples go up to seven, for now: + d}}$. The tuples go up to seven, for now, and then we give up + and use the general construct: % \begin{itemize} \begin{item} @@ -100,6 +105,9 @@ \begin{item} Septuple: $\septuple{1}{2}{3}{4}{5}{6}{7}$. \end{item} + \begin{item} + Tuple: $\tuple{1,2,\ldots,8675309}$. + \end{item} \end{itemize} % The factorial of the number $10$ is $\factorial{10}$, and the @@ -139,12 +147,12 @@ \begin{section}{Cone} The dual cone of $K$ is $\dual{K}$. Some familiar symmetric cones - are $\Rnplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. If cones - $K_{1}$ and $K_{2}$ are given, we can define $\posops{K_{1}}$, - $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, $\Zof{K_{1}}$, - $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can also define $x - \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} y$, and $x - \ltcone_{K} y$ with respect to a cone $K$. + are $\Rnplus$, $\Rnplusplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. + If cones $K_{1}$ and $K_{2}$ are given, we can define + $\posops{K_{1}}$, $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, + $\Zof{K_{1}}$, $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can + also define $x \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} + y$, and $x \ltcone_{K} y$ with respect to a cone $K$. \end{section} \begin{section}{Convex} @@ -158,7 +166,11 @@ \begin{section}{Euclidean Jordan algebras} The Jordan product of $x$ and $y$ in some Euclidean Jordan algebra - is $\jp{x}{y}$. + $V$ is $\jp{x}{y}$. The Jordan-automorphism group of $V$ is + $\JAut{V}$. Two popular operators in an EJA are its quadratic + representation and ``left multiplication by'' operator. For a + given $x$, they are, respectively, $\quadrepr{x}$ and + $\leftmult{x}$. \end{section} \begin{section}{Font} @@ -172,6 +184,11 @@ \end{itemize} \end{section} + \begin{section}{Hurwitz} + Here lies the Hurwitz algebras, like the quaternions + $\quaternions$ and octonions $\octonions$. + \end{section} + \begin{section}{Linear algebra} The absolute value of $x$ is $\abs{x}$, or its norm is $\norm{x}$. The inner product of $x$ and $y$ is $\ip{x}{y}$ and @@ -200,7 +217,9 @@ The set of all bounded linear operators from $V$ to $W$ is $\boundedops[W]{V}$. If $W = V$, then we write $\boundedops{V}$ - instead. + instead. If you have matrices instead, then the general linear + group of $n$-by-$n$ matrices with entries in $\mathbb{F}$ is + $\GL{n}{\mathbb{F}}$. If you want to solve a system of equations, try Cramer's rule~\cite{ehrenborg}. Or at least the reduced row-echelon form of