]> gitweb.michael.orlitzky.com - mjotex.git/blob - mjo-linear_algebra.tex
mjo-linear_algebra: add the \rank{} of a matrix (or EJA, or...).
[mjotex.git] / mjo-linear_algebra.tex
1 %
2 % Standard operations from linear algebra.
3 %
4 \ifx\havemjolinearalgebra\undefined
5 \def\havemjolinearalgebra{1}
6
7
8 \ifx\lvert\undefined
9 \usepackage{amsmath} % \lvert, \rVert, etc. and \operatorname.
10 \fi
11
12 \ifx\ocircle\undefined
13 \usepackage{wasysym}
14 \fi
15
16 \ifx\clipbox\undefined
17 % Part of the adjustbox package; needed to clip the \perp sign.
18 \usepackage{trimclip}
19 \fi
20
21 \input{mjo-common}
22
23 % Absolute value (modulus) of a scalar.
24 \newcommand*{\abs}[1]{\left\lvert{#1}\right\rvert}
25
26 % Norm of a vector.
27 \newcommand*{\norm}[1]{\left\lVert{#1}\right\rVert}
28
29 % The inner product between its two arguments.
30 \newcommand*{\ip}[2]{\left\langle{#1},{#2}\right\rangle}
31
32 % The tensor product of its two arguments.
33 \newcommand*{\tp}[2]{ {#1}\otimes{#2} }
34
35 % The Kronecker product of its two arguments. The usual notation for
36 % this is the same as the tensor product notation used for \tp, but
37 % that leads to confusion because the two definitions may not agree.
38 \newcommand*{\kp}[2]{ {#1}\odot{#2} }
39
40 % The adjoint of a linear operator.
41 \newcommand*{\adjoint}[1]{ #1^{*} }
42
43 % The ``transpose'' of a linear operator; namely, the adjoint, but
44 % specialized to real matrices.
45 \newcommand*{\transpose}[1]{ #1^{T} }
46
47 % The Moore-Penrose (or any other, I guess) pseudo-inverse of its
48 % sole argument.
49 \newcommand*{\pseudoinverse}[1]{ #1^{+} }
50
51 % The trace of an operator.
52 \newcommand*{\trace}[1]{ \operatorname{trace}\of{{#1}} }
53
54
55 % The "rank" of its argument, which is context-dependent. It can mean
56 % any or all of,
57 %
58 % * the rank of a matrix,
59 % * the rank of a power-associative algebra (particularly an EJA),
60 % * the rank of an element in a Euclidean Jordan algebra.
61 %
62 \newcommand*{\rank}[1]{ \operatorname{rank}\of{{#1}} }
63
64
65 % The ``span of'' operator. The name \span is already taken.
66 \newcommand*{\spanof}[1]{ \operatorname{span}\of{{#1}} }
67
68 % The ``co-dimension of'' operator.
69 \newcommand*{\codim}{ \operatorname{codim} }
70
71 % The orthogonal projection of its second argument onto the first.
72 \newcommand*{\proj}[2] { \operatorname{proj}\of{#1, #2} }
73
74 % The ``Automorphism group of'' operator.
75 \newcommand*{\Aut}[1]{ \operatorname{Aut}\of{{#1}} }
76
77 % The ``Lie algebra of'' operator.
78 \newcommand*{\Lie}[1]{ \operatorname{Lie}\of{{#1}} }
79
80 % The ``write a matrix as a big vector'' operator.
81 \newcommand*{\vectorize}[1]{ \operatorname{vec}\of{{#1}} }
82
83 % The ``write a big vector as a matrix'' operator.
84 \newcommand*{\matricize}[1]{ \operatorname{mat}\of{{#1}} }
85
86 % An inline column vector, with parentheses and a transpose operator.
87 \newcommand*{\colvec}[1]{ \transpose{\left({#1}\right)} }
88
89 % Bounded linear operators on some space. The required argument is the
90 % domain of those operators, and the optional argument is the
91 % codomain. If the optional argument is omitted, the required argument
92 % is used for both.
93 \newcommand*{\boundedops}[2][]{
94 \mathcal{B}\of{ {#2}
95 \if\relax\detokenize{#1}\relax
96 {}%
97 \else
98 {,{#1}}%
99 \fi
100 }
101 }
102
103
104 %
105 % Orthogonal direct sum.
106 %
107 % First declare my ``perp in a circle'' operator, which is meant to be
108 % like an \obot or an \operp except has the correct weight circle. It's
109 % achieved by overlaying an \ocircle with a \perp, but only after we
110 % clip off the top half of the \perp sign and shift it up.
111 \DeclareMathOperator{\oplusperp}{\mathbin{
112 \ooalign{
113 $\ocircle$\cr
114 \raisebox{0.625\height}{$\clipbox{0pt 0pt 0pt 0.5\height}{$\perp$}$}\cr
115 }
116 }}
117
118 % Now declare an orthogonal direct sum in terms of \oplusperp.
119 \newcommand*{\directsumperp}[2]{ {#1}\oplusperp{#2} }
120
121
122 \fi