]> gitweb.michael.orlitzky.com - mjotex.git/blob - examples.tex
mjo-eja.tex: new file for Euclidean Jordan algebras.
[mjotex.git] / examples.tex
1 \documentclass{report}
2
3 \usepackage{mjotex}
4 \usepackage{mathtools}
5
6 \begin{document}
7
8 \begin{section}{Algebra}
9 If $R$ is a commutative ring, then $\polyring{R}{X,Y,Z}$ is a
10 multivariate polynomial ring with indeterminates $X$, $Y$, and
11 $Z$, and coefficients in $R$. If $R$ is a moreover an integral
12 domain, then its fraction field is $\Frac{R}$.
13 \end{section}
14
15 \begin{section}{Algorithm}
16 An example of an algorithm (bogosort) environment.
17
18 \begin{algorithm}[H]
19 \caption{Sort a list of numbers}
20 \begin{algorithmic}
21 \Require{A list of numbers $L$}
22 \Ensure{A new, sorted copy $M$ of the list $L$}
23
24 \State{$M \gets L$}
25
26 \While{$M$ is not sorted}
27 \State{Rearrange $M$ randomly}
28 \EndWhile
29
30 \Return{$M$}
31 \end{algorithmic}
32 \end{algorithm}
33 \end{section}
34
35 \begin{section}{Arrow}
36 The identity operator on $V$ is $\identity{V}$. The composition of
37 $f$ and $g$ is $\compose{f}{g}$. The inverse of $f$ is
38 $\inverse{f}$. If $f$ is a function and $A$ is a subset of its
39 domain, then the preimage under $f$ of $A$ is $\preimage{f}{A}$.
40 \end{section}
41
42 \begin{section}{Calculus}
43 The gradient of $f : \Rn \rightarrow \Rn[1]$ is $\gradient{f} :
44 \Rn \rightarrow \Rn$.
45 \end{section}
46
47 \begin{section}{Common}
48 The function $f$ applied to $x$ is $f\of{x}$. We can group terms
49 like $a + \qty{b - c}$ or $a + \qty{b - \sqty{c - d}}$. Here's a
50 set $\set{1,2,3} = \setc{n \in \Nn[1]}{ n \le 3 }$. Here's a pair
51 of things $\pair{1}{2}$ or a triple of them $\triple{1}{2}{3}$,
52 and the factorial of the number $10$ is $\factorial{10}$.
53
54 The Cartesian product of two sets $A$ and $B$ is
55 $\cartprod{A}{B}$; if we take the product with $C$ as well, then
56 we obtain $\cartprodthree{A}{B}{C}$. The direct sum of $V$ and $W$
57 is $\directsum{V}{W}$. Or three things,
58 $\directsumthree{U}{V}{W}$. How about more things? Like
59 $\directsummany{k=1}{\infty}{V_{k}} \ne
60 \cartprodmany{k=1}{\infty}{V_{k}}$. Those direct sums and
61 cartesian products adapt nicely to display equations:
62 %
63 \begin{equation*}
64 \directsummany{k=1}{\infty}{V_{k}} \ne \cartprodmany{k=1}{\infty}{V_{k}}.
65 \end{equation*}
66 Here are a few common tuple spaces that should not have a
67 superscript when that superscript would be one: $\Nn[1]$,
68 $\Zn[1]$, $\Qn[1]$, $\Rn[1]$, $\Cn[1]$. However, if the
69 superscript is (say) two, then it appears: $\Nn[2]$, $\Zn[2]$,
70 $\Qn[2]$, $\Rn[2]$, $\Cn[2]$.
71
72 We also have a few basic set operations, for example the union of
73 two or three sets: $\union{A}{B}$, $\unionthree{A}{B}{C}$. And of
74 course with union comes intersection: $\intersect{A}{B}$,
75 $\intersectthree{A}{B}{C}$. We can also take an arbitrary
76 (indexed) union and intersections of things, like
77 $\unionmany{k=1}{\infty}{A_{k}}$ or
78 $\intersectmany{k=1}{\infty}{B_{k}}$. The best part about those
79 is that they do the right thing in a display equation:
80 %
81 \begin{equation*}
82 \unionmany{k=1}{\infty}{A_{k}} = \intersectmany{k=1}{\infty}{B_{k}}
83 \end{equation*}
84
85 Finally, we have the four standard types of intervals in $\Rn[1]$,
86 %
87 \begin{align*}
88 \intervaloo{a}{b} &= \setc{ x \in \Rn[1]}{ a < x < b },\\
89 \intervaloc{a}{b} &= \setc{ x \in \Rn[1]}{ a < x \le b },\\
90 \intervalco{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x < b }, \text{ and }\\
91 \intervalcc{a}{b} &= \setc{ x \in \Rn[1]}{ a \le x \le b }.
92 \end{align*}
93 \end{section}
94
95 \begin{section}{Complex}
96 We sometimes want to conjugate complex numbers like
97 $\compconj{a+bi} = a - bi$.
98 \end{section}
99
100 \begin{section}{Cone}
101 The dual cone of $K$ is $\dual{K}$. Some familiar symmetric cones
102 are $\Rnplus$, $\Lnplus$, $\Snplus$, and $\Hnplus$. If cones
103 $K_{1}$ and $K_{2}$ are given, we can define $\posops{K_{1}}$,
104 $\posops[K_{2}]{K_{1}}$, $\Sof{K_{1}}$, $\Zof{K_{1}}$,
105 $\LL{K_{1}}$, and $\lyapunovrank{K_{1}}$. We can also define $x
106 \gecone_{K} y$, $x \gtcone_{K} y$, $x \lecone_{K} y$, and $x
107 \ltcone_{K} y$ with respect to a cone $K$.
108 \end{section}
109
110 \begin{section}{Convex}
111 The conic hull of a set $X$ is $\cone{X}$; its affine hull is
112 $\aff{X}$, and its convex hull is $\conv{X}$. If $K$ is a cone,
113 then its lineality space is $\linspace{K}$, its lineality is
114 $\lin{K}$, and its extreme directions are $\Ext{K}$. The fact that
115 $F$ is a face of $K$ is denoted by $F \faceof K$; if $F$ is a
116 proper face, then we write $F \properfaceof K$.
117 \end{section}
118
119 \begin{section}{Euclidean Jordan algebras}
120 The Jordan product of $x$ and $y$ in some Euclidean Jordan algebra
121 is $\jp{x}{y}$.
122 \end{section}
123
124 \begin{section}{Font}
125 We can write things like Carathéodory and Güler and $\mathbb{R}$.
126 \end{section}
127
128 \begin{section}{Linear algebra}
129 The absolute value of $x$ is $\abs{x}$, or its norm is
130 $\norm{x}$. The inner product of $x$ and $y$ is $\ip{x}{y}$ and
131 their tensor product is $\tp{x}{y}$. The Kronecker product of
132 matrices $A$ and $B$ is $\kp{A}{B}$. The adjoint of the operator
133 $L$ is $\adjoint{L}$, or if it's a matrix, then its transpose is
134 $\transpose{L}$. Its trace is $\trace{L}$. Another matrix-specific
135 concept is the Moore-Penrose pseudoinverse of $L$, denoted by
136 $\pseudoinverse{L}$.
137
138 The span of a set $X$ is $\spanof{X}$, and its codimension is
139 $\codim{X}$. The projection of $X$ onto $V$ is $\proj{V}{X}$. The
140 automorphism group of $X$ is $\Aut{X}$, and its Lie algebra is
141 $\Lie{X}$. We can write a column vector $x \coloneqq
142 \colvec{x_{1},x_{2},x_{3},x_{4}}$ and turn it into a $2 \times 2$
143 matrix with $\matricize{x}$. To recover the vector, we use
144 $\vectorize{\matricize{x}}$.
145
146 The set of all bounded linear operators from $V$ to $W$ is
147 $\boundedops[W]{V}$. If $W = V$, then we write $\boundedops{V}$
148 instead.
149
150 The direct sum of $V$ and $W$ is $\directsum{V}{W}$, of course,
151 but what if $W = V^{\perp}$? Then we wish to indicate that fact by
152 writing $\directsumperp{V}{W}$. That operator should survive a
153 display equation, too, and the weight of the circle should match
154 that of the usual direct sum operator.
155 %
156 \begin{align*}
157 Z = \directsumperp{V}{W}\\
158 \oplus \oplusperp \oplus \oplusperp
159 \end{align*}
160 %
161 Its form should also survive in different font sizes...
162 \Large
163 \begin{align*}
164 Z = \directsumperp{V}{W}\\
165 \oplus \oplusperp \oplus \oplusperp
166 \end{align*}
167 \Huge
168 \begin{align*}
169 Z = \directsumperp{V}{W}\\
170 \oplus \oplusperp \oplus \oplusperp
171 \end{align*}
172 \normalsize
173 \end{section}
174
175 \begin{section}{Listing}
176 Here's an interactive SageMath prompt:
177
178 \begin{tcblisting}{listing only,
179 colback=codebg,
180 coltext=codefg,
181 listing options={language=sage,style=sage}}
182 sage: K = Cone([ (1,0), (0,1) ])
183 sage: K.positive_operator_gens()
184 [
185 [1 0] [0 1] [0 0] [0 0]
186 [0 0], [0 0], [1 0], [0 1]
187 ]
188 \end{tcblisting}
189
190 However, the smart way to display a SageMath listing is to load it
191 from an external file (under the ``listings'' subdirectory):
192
193 \sagelisting{example}
194
195 Keeping the listings in separate files makes it easy for the build
196 system to test them.
197 \end{section}
198
199 \begin{section}{Miscellaneous}
200 The cardinality of the set $X \coloneqq \set{1,2,3}$ is $\card{X}
201 = 3$.
202 \end{section}
203
204 \begin{section}{Proof by cases}
205
206 \begin{proposition}
207 There are two cases in the following proof.
208
209 \begin{proof}
210 The result should be self-evident once we have considered the
211 following two cases.
212 \begin{pcases}
213 \begin{case}[first case]
214 Nothing happens in the first case.
215 \end{case}
216 \begin{case}[second case]
217 The same thing happens in the second case.
218 \end{case}
219 \end{pcases}
220
221 You see?
222 \end{proof}
223 \end{proposition}
224
225 Here's another one.
226
227 \renewcommand{\baselinestretch}{2}
228 \begin{proposition}
229 Cases should display intelligently even when the document is
230 double-spaced.
231
232 \begin{proof}
233 Here we go again.
234
235 \begin{pcases}
236 \begin{case}[first case]
237 Nothing happens in the first case.
238 \end{case}
239 \begin{case}[second case]
240 The same thing happens in the second case.
241 \end{case}
242 \end{pcases}
243
244 Now it's over.
245 \end{proof}
246 \end{proposition}
247 \renewcommand{\baselinestretch}{1}
248 \end{section}
249
250 \begin{section}{Theorems}
251 \begin{corollary}
252 The
253 \end{corollary}
254
255 \begin{lemma}
256 quick
257 \end{lemma}
258
259 \begin{proposition}
260 brown
261 \end{proposition}
262
263 \begin{theorem}
264 fox
265 \end{theorem}
266
267 \begin{exercise}
268 jumps
269 \end{exercise}
270
271 \begin{definition}
272 quod
273 \end{definition}
274
275 \begin{example}
276 erat
277 \end{example}
278
279 \begin{remark}
280 demonstradum.
281 \end{remark}
282 \end{section}
283
284 \begin{section}{Theorems (starred)}
285 \begin{corollary*}
286 The
287 \end{corollary*}
288
289 \begin{lemma*}
290 quick
291 \end{lemma*}
292
293 \begin{proposition*}
294 brown
295 \end{proposition*}
296
297 \begin{theorem*}
298 fox
299 \end{theorem*}
300
301 \begin{exercise*}
302 jumps
303 \end{exercise*}
304
305 \begin{definition*}
306 quod
307 \end{definition*}
308
309 \begin{example*}
310 erat
311 \end{example*}
312
313 \begin{remark*}
314 demonstradum.
315 \end{remark*}
316 \end{section}
317
318 \begin{section}{Topology}
319 The interior of a set $X$ is $\interior{X}$. Its closure is
320 $\closure{X}$ and its boundary is $\boundary{X}$.
321 \end{section}
322
323 \end{document}