X-Git-Url: http://gitweb.michael.orlitzky.com/?p=dunshire.git;a=blobdiff_plain;f=test%2Fsymmetric_linear_game_test.py;h=067aaa15e6196e6120b9f613f2982847f08e9c71;hp=19be8c511f628a41f67baa0877ce37eaee4393ef;hb=709cd03fff79e76f9fd78ba70711ea2694607e05;hpb=cd77ba5250ed98ece623730c26af845366847487 diff --git a/test/symmetric_linear_game_test.py b/test/symmetric_linear_game_test.py index 19be8c5..067aaa1 100644 --- a/test/symmetric_linear_game_test.py +++ b/test/symmetric_linear_game_test.py @@ -137,9 +137,13 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904 of the game by the same number. """ (alpha, H) = random_nn_scaling(G) - value1 = G.solution().game_value() - value2 = H.solution().game_value() - modifier = 4*max(abs(alpha), 1) + soln1 = G.solution() + soln2 = H.solution() + value1 = soln1.game_value() + value2 = soln2.game_value() + modifier1 = G.epsilon_scale(soln1) + modifier2 = H.epsilon_scale(soln2) + modifier = max(modifier1, modifier2) self.assert_within_tol(alpha*value1, value2, modifier) @@ -178,7 +182,7 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904 (alpha, H) = random_translation(G) value2 = H.solution().game_value() - modifier = 4*max(abs(alpha), 1) + modifier = G.epsilon_scale(soln1) self.assert_within_tol(value1 + alpha, value2, modifier) # Make sure the same optimal pair works. @@ -221,14 +225,12 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904 y_bar = soln1.player2_optimal() soln2 = H.solution() - # The modifier of 4 is because each could be off by 2*ABS_TOL, - # which is how far apart the primal/dual objectives have been - # observed being. - self.assert_within_tol(-soln1.game_value(), soln2.game_value(), 4) + mod = G.epsilon_scale(soln1) + self.assert_within_tol(-soln1.game_value(), soln2.game_value(), mod) # Make sure the switched optimal pair works. Since x_bar and # y_bar come from G, we use the same modifier. - self.assert_within_tol(soln2.game_value(), H.payoff(y_bar, x_bar), 4) + self.assert_within_tol(soln2.game_value(), H.payoff(y_bar, x_bar), mod) @@ -263,13 +265,9 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904 ip1 = inner_product(y_bar, G.L()*x_bar - value*G.e1()) ip2 = inner_product(value*G.e2() - G.L().trans()*y_bar, x_bar) - # Huh.. well, y_bar and x_bar can each be epsilon away, but - # x_bar is scaled by L, so that's (norm(L) + 1), and then - # value could be off by epsilon, so that's another norm(e1) or - # norm(e2). On the other hand, this test seems to pass most of - # the time even with a modifier of one. How about.. four? - self.assert_within_tol(ip1, 0, 4) - self.assert_within_tol(ip2, 0, 4) + modifier = G.epsilon_scale(soln) + self.assert_within_tol(ip1, 0, modifier) + self.assert_within_tol(ip2, 0, modifier) def test_orthogonality_orthant(self): @@ -325,11 +323,9 @@ class SymmetricLinearGameTest(TestCase): # pylint: disable=R0904 negative_stable = all([eig < options.ABS_TOL for eig in eigs]) self.assertTrue(negative_stable) - # The dual game's value should always equal the primal's. - # The modifier of 4 is because even though the games are dual, - # CVXOPT doesn't know that, and each could be off by 2*ABS_TOL. dualsoln = G.dual().solution() - self.assert_within_tol(dualsoln.game_value(), soln.game_value(), 4) + mod = G.epsilon_scale(soln) + self.assert_within_tol(dualsoln.game_value(), soln.game_value(), mod) def test_lyapunov_orthant(self):