]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
Make the _C(), _A(), and _b() methods for games public.
[dunshire.git] / dunshire / games.py
index 1f672abeb3870f45b13a8d9d169e8df0f1059d98..672810de8094df7c37005cd5106fe5b8175888c4 100644 (file)
@@ -8,12 +8,11 @@ knows how to solve a linear game.
 from cvxopt import matrix, printing, solvers
 from .cones import CartesianProduct
 from .errors import GameUnsolvableException, PoorScalingException
-from .matrices import append_col, append_row, condition_number, identity
+from .matrices import (append_col, append_row, condition_number, identity,
+                       inner_product)
 from . import options
 
 printing.options['dformat'] = options.FLOAT_FORMAT
-solvers.options['show_progress'] = options.VERBOSE
-
 
 class Solution:
     """
@@ -324,8 +323,6 @@ class SymmetricLinearGame:
         if not self._e2 in K:
             raise ValueError('the point e2 must lie in the interior of K')
 
-        # Cached result of the self._zero() method.
-        self._zero_col = None
 
 
     def __str__(self):
@@ -338,49 +335,479 @@ class SymmetricLinearGame:
               '  e1 = {:s},\n' \
               '  e2 = {:s},\n' \
               '  Condition((L, K, e1, e2)) = {:f}.'
-        indented_L = '\n      '.join(str(self._L).splitlines())
-        indented_e1 = '\n       '.join(str(self._e1).splitlines())
-        indented_e2 = '\n       '.join(str(self._e2).splitlines())
+        indented_L = '\n      '.join(str(self.L()).splitlines())
+        indented_e1 = '\n       '.join(str(self.e1()).splitlines())
+        indented_e2 = '\n       '.join(str(self.e2()).splitlines())
 
         return tpl.format(indented_L,
-                          str(self._K),
+                          str(self.K()),
                           indented_e1,
                           indented_e2,
                           self.condition())
 
 
+    def L(self):
+        """
+        Return the matrix ``L`` passed to the constructor.
+
+        Returns
+        -------
+
+        matrix
+            The matrix that defines this game's :meth:`payoff` operator.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.L())
+            [  1  -5 -15]
+            [ -1   2  -3]
+            [-12 -15   1]
+            <BLANKLINE>
+
+        """
+        return self._L
+
+
+    def K(self):
+        """
+        Return the cone over which this game is played.
+
+        Returns
+        -------
+
+        SymmetricCone
+            The :class:`SymmetricCone` over which this game is played.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.K())
+            Nonnegative orthant in the real 3-space
+
+        """
+        return self._K
+
+
+    def e1(self):
+        """
+        Return player one's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e1())
+            [ 1]
+            [ 1]
+            [ 1]
+            <BLANKLINE>
+
+        """
+        return self._e1
+
+
+    def e2(self):
+        """
+        Return player two's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e2())
+            [ 1]
+            [ 2]
+            [ 3]
+            <BLANKLINE>
+
+        """
+        return self._e2
+
+
+    def payoff(self, strategy1, strategy2):
+        r"""
+        Return the payoff associated with ``strategy1`` and ``strategy2``.
+
+        The payoff operator takes pairs of strategies to a real
+        number. For example, if player one's strategy is :math:`x` and
+        player two's strategy is :math:`y`, then the associated payoff
+        is :math:`\left\langle L\left(x\right),y \right\rangle` \in
+        \mathbb{R}. Here, :math:`L` denotes the same linear operator as
+        :meth:`L`. This method computes the payoff given the two
+        players' strategies.
+
+        Parameters
+        ----------
+
+        strategy1 : matrix
+            Player one's strategy.
+
+        strategy2 : matrix
+            Player two's strategy.
+
+        Returns
+        -------
+
+        float
+            The payoff for the game when player one plays ``strategy1``
+            and player two plays ``strategy2``.
+
+        Examples
+        --------
+
+        The value of the game should be the payoff at the optimal
+        strategies::
+
+            >>> from dunshire import *
+            >>> from dunshire.options import ABS_TOL
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> soln = SLG.solution()
+            >>> x_bar = soln.player1_optimal()
+            >>> y_bar = soln.player2_optimal()
+            >>> abs(SLG.payoff(x_bar, y_bar) - soln.game_value()) < ABS_TOL
+            True
+
+        """
+        return inner_product(self.L()*strategy1, strategy2)
+
+
+    def dimension(self):
+        """
+        Return the dimension of this game.
+
+        The dimension of a game is not needed for the theory, but it is
+        useful for the implementation. We define the dimension of a game
+        to be the dimension of its underlying cone. Or what is the same,
+        the dimension of the space from which the strategies are chosen.
+
+        Returns
+        -------
+
+        int
+            The dimension of the cone :meth:`K`, or of the space where
+            this game is played.
+
+        Examples
+        --------
+
+        The dimension of a game over the nonnegative quadrant in the
+        plane should be two (the dimension of the plane)::
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(2)
+            >>> L = [[1,-5],[-1,2]]
+            >>> e1 = [1,1]
+            >>> e2 = [1,4]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.dimension()
+            2
+
+        """
+        return self.K().dimension()
+
+
     def _zero(self):
         """
         Return a column of zeros that fits ``K``.
 
         This is used in our CVXOPT construction.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``self.dimension()``-by-``1`` column vector of zeros.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = identity(3)
+            >>> e1 = [1,1,1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG._zero())
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            <BLANKLINE>
+
         """
-        if self._zero_col is None:
-            # Cache it, it's constant.
-            self._zero_col = matrix(0, (self._K.dimension(), 1), tc='d')
-        return self._zero_col
+        return matrix(0, (self.dimension(), 1), tc='d')
 
 
-    def _A(self):
+    def A(self):
         """
         Return the matrix ``A`` used in our CVXOPT construction.
 
         This matrix ``A``  appears on the right-hand side of ``Ax = b``
         in the statement of the CVXOPT conelp program.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``1``-by-``(1 + self.dimension())`` row vector. Its first
+            entry is zero, and the rest are the entries of ``e2``.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,1,1],[1,1,1],[1,1,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.A())
+            [0.0000000 1.0000000 2.0000000 3.0000000]
+            <BLANKLINE>
+
         """
-        return matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
+        return matrix([0, self.e2()], (1, self.dimension() + 1), 'd')
+
 
 
     def _G(self):
         r"""
         Return the matrix ``G`` used in our CVXOPT construction.
 
-        Thus matrix ``G``that appears on the left-hand side of ``Gx + s = h``
+        Thus matrix ``G`` appears on the left-hand side of ``Gx + s = h``
         in the statement of the CVXOPT conelp program.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``2*self.dimension()``-by-``(1 + self.dimension())`` matrix.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG._G())
+            [  0.0000000  -1.0000000   0.0000000   0.0000000]
+            [  0.0000000   0.0000000  -1.0000000   0.0000000]
+            [  0.0000000   0.0000000   0.0000000  -1.0000000]
+            [  1.0000000  -4.0000000  -5.0000000  -6.0000000]
+            [  2.0000000  -7.0000000  -8.0000000  -9.0000000]
+            [  3.0000000 -10.0000000 -11.0000000 -12.0000000]
+            <BLANKLINE>
+
         """
-        I = identity(self._K.dimension())
-        return append_row(append_col(self._zero(), -I),
-                          append_col(self._e1, -self._L))
+        identity_matrix = identity(self.dimension())
+        return append_row(append_col(self._zero(), -identity_matrix),
+                          append_col(self.e1(), -self.L()))
+
+
+    def _c(self):
+        """
+        Return the vector ``c`` used in our CVXOPT construction.
+
+        The column vector ``c``  appears in the objective function
+        value ``<c,x>`` in the statement of the CVXOPT conelp program.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``self.dimension()``-by-``1`` column vector.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG._c())
+            [-1.0000000]
+            [ 0.0000000]
+            [ 0.0000000]
+            [ 0.0000000]
+            <BLANKLINE>
+
+        """
+        return matrix([-1, self._zero()])
+
+
+    def C(self):
+        """
+        Return the cone ``C`` used in our CVXOPT construction.
+
+        The cone ``C`` is the cone over which the conelp program takes
+        place.
+
+        Returns
+        -------
+
+        CartesianProduct
+            The cartesian product of ``K`` with itself.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.C())
+            Cartesian product of dimension 6 with 2 factors:
+              * Nonnegative orthant in the real 3-space
+              * Nonnegative orthant in the real 3-space
+
+        """
+        return CartesianProduct(self._K, self._K)
+
+    def _h(self):
+        """
+        Return the ``h`` vector used in our CVXOPT construction.
+
+        The ``h`` vector appears on the right-hand side of :math:`Gx + s
+        = h` in the statement of the CVXOPT conelp program.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``2*self.dimension()``-by-``1`` column vector of zeros.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG._h())
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            [0.0000000]
+            <BLANKLINE>
+
+        """
+
+        return matrix([self._zero(), self._zero()])
+
+
+    @staticmethod
+    def b():
+        """
+        Return the ``b`` vector used in our CVXOPT construction.
+
+        The vector ``b`` appears on the right-hand side of :math:`Ax =
+        b` in the statement of the CVXOPT conelp program.
+
+        This method is static because the dimensions and entries of
+        ``b`` are known beforehand, and don't depend on any other
+        properties of the game.
+
+        .. warning::
+
+            It is not safe to cache any of the matrices passed to
+            CVXOPT, because it can clobber them.
+
+        Returns
+        -------
+
+        matrix
+            A ``1``-by-``1`` matrix containing a single entry ``1``.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[4,5,6],[7,8,9],[10,11,12]]
+            >>> e1 = [1,2,3]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.b())
+            [1.0000000]
+            <BLANKLINE>
+
+        """
+        return matrix([1], tc='d')
+
 
 
     def solution(self):
@@ -447,36 +874,75 @@ class SymmetricLinearGame:
               [0.156...]
               [0.187...]
 
-        """
-        # The cone "C" that appears in the statement of the CVXOPT
-        # conelp program.
-        C = CartesianProduct(self._K, self._K)
+        This is another Gowda/Ravindran example that is supposed to have
+        a negative game value::
 
-        # The column vector "b" that appears on the right-hand side of
-        # Ax = b in the statement of the CVXOPT conelp program.
-        b = matrix([1], tc='d')
+            >>> from dunshire import *
+            >>> from dunshire.options import ABS_TOL
+            >>> L = [[1, -2], [-2, 1]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1, 1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.solution().game_value() < -ABS_TOL
+            True
+
+        The following two games are problematic numerically, but we
+        should be able to solve them::
+
+            >>> from dunshire import *
+            >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
+            ...      [ 1.30481749924621448500, 1.65278664543326403447]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
+            >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 18.767...
+            Player 1 optimal:
+              [-0.000...]
+              [ 9.766...]
+            Player 2 optimal:
+              [1.047...]
+              [0.000...]
 
-        # The column vector "h" that appears on the right-hand side of
-        # Gx + s = h in the statement of the CVXOPT conelp program.
-        h = matrix([self._zero(), self._zero()])
+        ::
 
-        # The column vector "c" that appears in the objective function
-        # value <c,x> in the statement of the CVXOPT conelp program.
-        c = matrix([-1, self._zero()])
+            >>> from dunshire import *
+            >>> L = [[1.54159395026049472754, 2.21344728574316684799],
+            ...      [1.33147433507846657541, 1.17913616272988108769]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
+            >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 24.614...
+            Player 1 optimal:
+              [ 6.371...]
+              [-0.000...]
+            Player 2 optimal:
+              [2.506...]
+              [0.000...]
 
-        # Actually solve the thing and obtain a dictionary describing
-        # what happened.
+        """
         try:
-            soln_dict = solvers.conelp(c, self._G(), h,
-                                       C.cvxopt_dims(), self._A(), b)
-        except ValueError as e:
-            if str(e) == 'math domain error':
+            opts = {'show_progress': False}
+            soln_dict = solvers.conelp(self._c(),
+                                       self._G(),
+                                       self._h(),
+                                       self.C().cvxopt_dims(),
+                                       self.A(),
+                                       self.b(),
+                                       options=opts)
+        except ValueError as error:
+            if str(error) == 'math domain error':
                 # Oops, CVXOPT tried to take the square root of a
                 # negative number. Report some details about the game
                 # rather than just the underlying CVXOPT crash.
+                printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
                 raise PoorScalingException(self)
             else:
-                raise e
+                raise error
 
         # The optimal strategies are named ``p`` and ``q`` in the
         # background documentation, and we need to extract them from
@@ -487,36 +953,53 @@ class SymmetricLinearGame:
         p1_value = -soln_dict['primal objective']
         p2_value = -soln_dict['dual objective']
         p1_optimal = soln_dict['x'][1:]
-        p2_optimal = soln_dict['z'][self._K.dimension():]
+        p2_optimal = soln_dict['z'][self.dimension():]
 
         # The "status" field contains "optimal" if everything went
         # according to plan. Other possible values are "primal
         # infeasible", "dual infeasible", "unknown", all of which mean
-        # we didn't get a solution. The "infeasible" ones are the
-        # worst, since they indicate that CVXOPT is convinced the
-        # problem is infeasible (and that cannot happen).
+        # we didn't get a solution.
+        #
+        # The "infeasible" ones are the worst, since they indicate
+        # that CVXOPT is convinced the problem is infeasible (and that
+        # cannot happen).
         if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
             raise GameUnsolvableException(self, soln_dict)
-        elif soln_dict['status'] == 'unknown':
-            # When we get a status of "unknown", we may still be able
-            # to salvage a solution out of the returned
-            # dictionary. Often this is the result of numerical
-            # difficulty and we can simply check that the primal/dual
-            # objectives match (within a tolerance) and that the
-            # primal/dual optimal solutions are within the cone (to a
-            # tolerance as well).
-            #
-            # The fudge factor of two is basically unjustified, but
-            # makes intuitive sense when you imagine that the primal
-            # value could be under the true optimal by ``ABS_TOL``
-            # and the dual value could be over by the same amount.
-            #
-            if abs(p1_value - p2_value) > 2*options.ABS_TOL:
-                raise GameUnsolvableException(self, soln_dict)
-            if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-                raise GameUnsolvableException(self, soln_dict)
-
-        return Solution(p1_value, p1_optimal, p2_optimal)
+
+        # The "optimal" and "unknown" results, we actually treat the
+        # same. Even if CVXOPT bails out due to numerical difficulty,
+        # it will have some candidate points in mind. If those
+        # candidates are good enough, we take them. We do the same
+        # check (perhaps pointlessly so) for "optimal" results.
+        #
+        # First we check that the primal/dual objective values are
+        # close enough (one could be low by ABS_TOL, the other high by
+        # it) because otherwise CVXOPT might return "unknown" and give
+        # us two points in the cone that are nowhere near optimal.
+        if abs(p1_value - p2_value) > 2*options.ABS_TOL:
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # And we also check that the points it gave us belong to the
+        # cone, just in case...
+        if (p1_optimal not in self._K) or (p2_optimal not in self._K):
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # For the game value, we could use any of:
+        #
+        #   * p1_value
+        #   * p2_value
+        #   * (p1_value + p2_value)/2
+        #   * the game payoff
+        #
+        # We want the game value to be the payoff, however, so it
+        # makes the most sense to just use that, even if it means we
+        # can't test the fact that p1_value/p2_value are close to the
+        # payoff.
+        payoff = self.payoff(p1_optimal, p2_optimal)
+        return Solution(payoff, p1_optimal, p2_optimal)
 
 
     def condition(self):
@@ -553,7 +1036,7 @@ class SymmetricLinearGame:
         True
 
         """
-        return (condition_number(self._G()) + condition_number(self._A()))/2
+        return (condition_number(self._G()) + condition_number(self.A()))/2
 
 
     def dual(self):
@@ -589,10 +1072,10 @@ class SymmetricLinearGame:
               Condition((L, K, e1, e2)) = 44.476...
 
         """
-        # We pass ``self._L`` right back into the constructor, because
+        # We pass ``self.L()`` right back into the constructor, because
         # it will be transposed there. And keep in mind that ``self._K``
         # is its own dual.
-        return SymmetricLinearGame(self._L,
-                                   self._K,
-                                   self._e2,
-                                   self._e1)
+        return SymmetricLinearGame(self.L(),
+                                   self.K(),
+                                   self.e2(),
+                                   self.e1())