]> gitweb.michael.orlitzky.com - dunshire.git/blobdiff - dunshire/games.py
Make the _C(), _A(), and _b() methods for games public.
[dunshire.git] / dunshire / games.py
index 1f3a15a0b261c723f7f5c65d66d255fd2b9fdc99..672810de8094df7c37005cd5106fe5b8175888c4 100644 (file)
@@ -8,7 +8,8 @@ knows how to solve a linear game.
 from cvxopt import matrix, printing, solvers
 from .cones import CartesianProduct
 from .errors import GameUnsolvableException, PoorScalingException
-from .matrices import append_col, append_row, condition_number, identity
+from .matrices import (append_col, append_row, condition_number, identity,
+                       inner_product)
 from . import options
 
 printing.options['dformat'] = options.FLOAT_FORMAT
@@ -334,17 +335,216 @@ class SymmetricLinearGame:
               '  e1 = {:s},\n' \
               '  e2 = {:s},\n' \
               '  Condition((L, K, e1, e2)) = {:f}.'
-        indented_L = '\n      '.join(str(self._L).splitlines())
-        indented_e1 = '\n       '.join(str(self._e1).splitlines())
-        indented_e2 = '\n       '.join(str(self._e2).splitlines())
+        indented_L = '\n      '.join(str(self.L()).splitlines())
+        indented_e1 = '\n       '.join(str(self.e1()).splitlines())
+        indented_e2 = '\n       '.join(str(self.e2()).splitlines())
 
         return tpl.format(indented_L,
-                          str(self._K),
+                          str(self.K()),
                           indented_e1,
                           indented_e2,
                           self.condition())
 
 
+    def L(self):
+        """
+        Return the matrix ``L`` passed to the constructor.
+
+        Returns
+        -------
+
+        matrix
+            The matrix that defines this game's :meth:`payoff` operator.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.L())
+            [  1  -5 -15]
+            [ -1   2  -3]
+            [-12 -15   1]
+            <BLANKLINE>
+
+        """
+        return self._L
+
+
+    def K(self):
+        """
+        Return the cone over which this game is played.
+
+        Returns
+        -------
+
+        SymmetricCone
+            The :class:`SymmetricCone` over which this game is played.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.K())
+            Nonnegative orthant in the real 3-space
+
+        """
+        return self._K
+
+
+    def e1(self):
+        """
+        Return player one's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e1())
+            [ 1]
+            [ 1]
+            [ 1]
+            <BLANKLINE>
+
+        """
+        return self._e1
+
+
+    def e2(self):
+        """
+        Return player two's interior point.
+
+        Returns
+        -------
+
+        matrix
+            The point interior to :meth:`K` affiliated with player one.
+
+        Examples
+        --------
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,2,3]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.e2())
+            [ 1]
+            [ 2]
+            [ 3]
+            <BLANKLINE>
+
+        """
+        return self._e2
+
+
+    def payoff(self, strategy1, strategy2):
+        r"""
+        Return the payoff associated with ``strategy1`` and ``strategy2``.
+
+        The payoff operator takes pairs of strategies to a real
+        number. For example, if player one's strategy is :math:`x` and
+        player two's strategy is :math:`y`, then the associated payoff
+        is :math:`\left\langle L\left(x\right),y \right\rangle` \in
+        \mathbb{R}. Here, :math:`L` denotes the same linear operator as
+        :meth:`L`. This method computes the payoff given the two
+        players' strategies.
+
+        Parameters
+        ----------
+
+        strategy1 : matrix
+            Player one's strategy.
+
+        strategy2 : matrix
+            Player two's strategy.
+
+        Returns
+        -------
+
+        float
+            The payoff for the game when player one plays ``strategy1``
+            and player two plays ``strategy2``.
+
+        Examples
+        --------
+
+        The value of the game should be the payoff at the optimal
+        strategies::
+
+            >>> from dunshire import *
+            >>> from dunshire.options import ABS_TOL
+            >>> K = NonnegativeOrthant(3)
+            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
+            >>> e1 = [1,1,1]
+            >>> e2 = [1,1,1]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> soln = SLG.solution()
+            >>> x_bar = soln.player1_optimal()
+            >>> y_bar = soln.player2_optimal()
+            >>> abs(SLG.payoff(x_bar, y_bar) - soln.game_value()) < ABS_TOL
+            True
+
+        """
+        return inner_product(self.L()*strategy1, strategy2)
+
+
+    def dimension(self):
+        """
+        Return the dimension of this game.
+
+        The dimension of a game is not needed for the theory, but it is
+        useful for the implementation. We define the dimension of a game
+        to be the dimension of its underlying cone. Or what is the same,
+        the dimension of the space from which the strategies are chosen.
+
+        Returns
+        -------
+
+        int
+            The dimension of the cone :meth:`K`, or of the space where
+            this game is played.
+
+        Examples
+        --------
+
+        The dimension of a game over the nonnegative quadrant in the
+        plane should be two (the dimension of the plane)::
+
+            >>> from dunshire import *
+            >>> K = NonnegativeOrthant(2)
+            >>> L = [[1,-5],[-1,2]]
+            >>> e1 = [1,1]
+            >>> e2 = [1,4]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.dimension()
+            2
+
+        """
+        return self.K().dimension()
+
+
     def _zero(self):
         """
         Return a column of zeros that fits ``K``.
@@ -360,7 +560,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``K.dimension()``-by-``1`` column vector of zeros.
+            A ``self.dimension()``-by-``1`` column vector of zeros.
 
         Examples
         --------
@@ -378,10 +578,10 @@ class SymmetricLinearGame:
             <BLANKLINE>
 
         """
-        return matrix(0, (self._K.dimension(), 1), tc='d')
+        return matrix(0, (self.dimension(), 1), tc='d')
 
 
-    def _A(self):
+    def A(self):
         """
         Return the matrix ``A`` used in our CVXOPT construction.
 
@@ -397,7 +597,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``1``-by-``(1 + K.dimension())`` row vector. Its first
+            A ``1``-by-``(1 + self.dimension())`` row vector. Its first
             entry is zero, and the rest are the entries of ``e2``.
 
         Examples
@@ -409,12 +609,12 @@ class SymmetricLinearGame:
             >>> e1 = [1,1,1]
             >>> e2 = [1,2,3]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._A())
+            >>> print(SLG.A())
             [0.0000000 1.0000000 2.0000000 3.0000000]
             <BLANKLINE>
 
         """
-        return matrix([0, self._e2], (1, self._K.dimension() + 1), 'd')
+        return matrix([0, self.e2()], (1, self.dimension() + 1), 'd')
 
 
 
@@ -434,7 +634,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``2*K.dimension()``-by-``1 + K.dimension()`` matrix.
+            A ``2*self.dimension()``-by-``(1 + self.dimension())`` matrix.
 
         Examples
         --------
@@ -455,9 +655,9 @@ class SymmetricLinearGame:
             <BLANKLINE>
 
         """
-        I = identity(self._K.dimension())
-        return append_row(append_col(self._zero(), -I),
-                          append_col(self._e1, -self._L))
+        identity_matrix = identity(self.dimension())
+        return append_row(append_col(self._zero(), -identity_matrix),
+                          append_col(self.e1(), -self.L()))
 
 
     def _c(self):
@@ -476,7 +676,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``K.dimension()``-by-``1`` column vector.
+            A ``self.dimension()``-by-``1`` column vector.
 
         Examples
         --------
@@ -498,7 +698,7 @@ class SymmetricLinearGame:
         return matrix([-1, self._zero()])
 
 
-    def _C(self):
+    def C(self):
         """
         Return the cone ``C`` used in our CVXOPT construction.
 
@@ -520,7 +720,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._C())
+            >>> print(SLG.C())
             Cartesian product of dimension 6 with 2 factors:
               * Nonnegative orthant in the real 3-space
               * Nonnegative orthant in the real 3-space
@@ -544,7 +744,7 @@ class SymmetricLinearGame:
         -------
 
         matrix
-            A ``2*K.dimension()``-by-``1`` column vector of zeros.
+            A ``2*self.dimension()``-by-``1`` column vector of zeros.
 
         Examples
         --------
@@ -568,13 +768,19 @@ class SymmetricLinearGame:
 
         return matrix([self._zero(), self._zero()])
 
-    def _b(self):
+
+    @staticmethod
+    def b():
         """
         Return the ``b`` vector used in our CVXOPT construction.
 
         The vector ``b`` appears on the right-hand side of :math:`Ax =
         b` in the statement of the CVXOPT conelp program.
 
+        This method is static because the dimensions and entries of
+        ``b`` are known beforehand, and don't depend on any other
+        properties of the game.
+
         .. warning::
 
             It is not safe to cache any of the matrices passed to
@@ -595,7 +801,7 @@ class SymmetricLinearGame:
             >>> e1 = [1,2,3]
             >>> e2 = [1,1,1]
             >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> print(SLG._b())
+            >>> print(SLG.b())
             [1.0000000]
             <BLANKLINE>
 
@@ -603,129 +809,6 @@ class SymmetricLinearGame:
         return matrix([1], tc='d')
 
 
-    def _try_solution(self, tolerance):
-        """
-        Solve this linear game within ``tolerance``, if possible.
-
-        This private function is the one that does all of the actual
-        work for :meth:`solution`. This method accepts a ``tolerance``,
-        and what :meth:`solution` does is call this method twice with
-        two different tolerances. First it tries a strict tolerance, and
-        then it tries a looser one.
-
-        .. warning::
-
-            If you try to be smart and precompute the matrices used by
-            this function (the ones passed to ``conelp``), then you're
-            going to shoot yourself in the foot. CVXOPT can and will
-            clobber some (but not all) of its input matrices. This isn't
-            performance sensitive, so play it safe.
-
-        Parameters
-        ----------
-
-        tolerance : float
-            The absolute tolerance to pass to the CVXOPT solver.
-
-        Returns
-        -------
-
-        :class:`Solution`
-            A :class:`Solution` object describing the game's value and
-            the optimal strategies of both players.
-
-        Raises
-        ------
-        GameUnsolvableException
-            If the game could not be solved (if an optimal solution to its
-            associated cone program was not found).
-
-        PoorScalingException
-            If the game could not be solved because CVXOPT crashed while
-            trying to take the square root of a negative number.
-
-        Examples
-        --------
-
-        This game can be solved easily, so the first attempt in
-        :meth:`solution` should succeed::
-
-            >>> from dunshire import *
-            >>> from dunshire.matrices import norm
-            >>> from dunshire.options import ABS_TOL
-            >>> K = NonnegativeOrthant(3)
-            >>> L = [[1,-5,-15],[-1,2,-3],[-12,-15,1]]
-            >>> e1 = [1,1,1]
-            >>> e2 = [1,1,1]
-            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
-            >>> s1 = SLG.solution()
-            >>> s2 = SLG._try_solution(options.ABS_TOL)
-            >>> abs(s1.game_value() - s2.game_value()) < ABS_TOL
-            True
-            >>> norm(s1.player1_optimal() - s2.player1_optimal()) < ABS_TOL
-            True
-            >>> norm(s1.player2_optimal() - s2.player2_optimal()) < ABS_TOL
-            True
-
-        """
-        try:
-            solvers.options['show_progress'] = options.VERBOSE
-            solvers.options['abs_tol'] = tolerance
-            soln_dict = solvers.conelp(self._c(),
-                                       self._G(),
-                                       self._h(),
-                                       self._C().cvxopt_dims(),
-                                       self._A(),
-                                       self._b())
-        except ValueError as e:
-            if str(e) == 'math domain error':
-                # Oops, CVXOPT tried to take the square root of a
-                # negative number. Report some details about the game
-                # rather than just the underlying CVXOPT crash.
-                raise PoorScalingException(self)
-            else:
-                raise e
-
-        # The optimal strategies are named ``p`` and ``q`` in the
-        # background documentation, and we need to extract them from
-        # the CVXOPT ``x`` and ``z`` variables. The objective values
-        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
-        # ``x`` and ``y`` variables; however, they're stored
-        # conveniently as separate entries in the solution dictionary.
-        p1_value = -soln_dict['primal objective']
-        p2_value = -soln_dict['dual objective']
-        p1_optimal = soln_dict['x'][1:]
-        p2_optimal = soln_dict['z'][self._K.dimension():]
-
-        # The "status" field contains "optimal" if everything went
-        # according to plan. Other possible values are "primal
-        # infeasible", "dual infeasible", "unknown", all of which mean
-        # we didn't get a solution. The "infeasible" ones are the
-        # worst, since they indicate that CVXOPT is convinced the
-        # problem is infeasible (and that cannot happen).
-        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
-            raise GameUnsolvableException(self, soln_dict)
-        elif soln_dict['status'] == 'unknown':
-            # When we get a status of "unknown", we may still be able
-            # to salvage a solution out of the returned
-            # dictionary. Often this is the result of numerical
-            # difficulty and we can simply check that the primal/dual
-            # objectives match (within a tolerance) and that the
-            # primal/dual optimal solutions are within the cone (to a
-            # tolerance as well).
-            #
-            # The fudge factor of two is basically unjustified, but
-            # makes intuitive sense when you imagine that the primal
-            # value could be under the true optimal by ``ABS_TOL``
-            # and the dual value could be over by the same amount.
-            #
-            if abs(p1_value - p2_value) > tolerance:
-                raise GameUnsolvableException(self, soln_dict)
-            if (p1_optimal not in self._K) or (p2_optimal not in self._K):
-                raise GameUnsolvableException(self, soln_dict)
-
-        return Solution(p1_value, p1_optimal, p2_optimal)
-
 
     def solution(self):
         """
@@ -791,16 +874,132 @@ class SymmetricLinearGame:
               [0.156...]
               [0.187...]
 
+        This is another Gowda/Ravindran example that is supposed to have
+        a negative game value::
+
+            >>> from dunshire import *
+            >>> from dunshire.options import ABS_TOL
+            >>> L = [[1, -2], [-2, 1]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [1, 1]
+            >>> e2 = e1
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> SLG.solution().game_value() < -ABS_TOL
+            True
+
+        The following two games are problematic numerically, but we
+        should be able to solve them::
+
+            >>> from dunshire import *
+            >>> L = [[-0.95237953890954685221, 1.83474556206462535712],
+            ...      [ 1.30481749924621448500, 1.65278664543326403447]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.95477167524644313001, 0.63270781756540095397]
+            >>> e2 = [0.39633793037154141370, 0.10239281495640320530]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 18.767...
+            Player 1 optimal:
+              [-0.000...]
+              [ 9.766...]
+            Player 2 optimal:
+              [1.047...]
+              [0.000...]
+
+        ::
+
+            >>> from dunshire import *
+            >>> L = [[1.54159395026049472754, 2.21344728574316684799],
+            ...      [1.33147433507846657541, 1.17913616272988108769]]
+            >>> K = NonnegativeOrthant(2)
+            >>> e1 = [0.39903040089404784307, 0.12377403622479113410]
+            >>> e2 = [0.15695181142215544612, 0.85527381344651265405]
+            >>> SLG = SymmetricLinearGame(L, K, e1, e2)
+            >>> print(SLG.solution())
+            Game value: 24.614...
+            Player 1 optimal:
+              [ 6.371...]
+              [-0.000...]
+            Player 2 optimal:
+              [2.506...]
+              [0.000...]
+
         """
         try:
-            # First try with a stricter tolerance. Who knows, it might
-            # work. If it does, we prefer that solution.
-            return self._try_solution(options.ABS_TOL / 10)
+            opts = {'show_progress': False}
+            soln_dict = solvers.conelp(self._c(),
+                                       self._G(),
+                                       self._h(),
+                                       self.C().cvxopt_dims(),
+                                       self.A(),
+                                       self.b(),
+                                       options=opts)
+        except ValueError as error:
+            if str(error) == 'math domain error':
+                # Oops, CVXOPT tried to take the square root of a
+                # negative number. Report some details about the game
+                # rather than just the underlying CVXOPT crash.
+                printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+                raise PoorScalingException(self)
+            else:
+                raise error
+
+        # The optimal strategies are named ``p`` and ``q`` in the
+        # background documentation, and we need to extract them from
+        # the CVXOPT ``x`` and ``z`` variables. The objective values
+        # :math:`nu` and :math:`omega` can also be found in the CVXOPT
+        # ``x`` and ``y`` variables; however, they're stored
+        # conveniently as separate entries in the solution dictionary.
+        p1_value = -soln_dict['primal objective']
+        p2_value = -soln_dict['dual objective']
+        p1_optimal = soln_dict['x'][1:]
+        p2_optimal = soln_dict['z'][self.dimension():]
+
+        # The "status" field contains "optimal" if everything went
+        # according to plan. Other possible values are "primal
+        # infeasible", "dual infeasible", "unknown", all of which mean
+        # we didn't get a solution.
+        #
+        # The "infeasible" ones are the worst, since they indicate
+        # that CVXOPT is convinced the problem is infeasible (and that
+        # cannot happen).
+        if soln_dict['status'] in ['primal infeasible', 'dual infeasible']:
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # The "optimal" and "unknown" results, we actually treat the
+        # same. Even if CVXOPT bails out due to numerical difficulty,
+        # it will have some candidate points in mind. If those
+        # candidates are good enough, we take them. We do the same
+        # check (perhaps pointlessly so) for "optimal" results.
+        #
+        # First we check that the primal/dual objective values are
+        # close enough (one could be low by ABS_TOL, the other high by
+        # it) because otherwise CVXOPT might return "unknown" and give
+        # us two points in the cone that are nowhere near optimal.
+        if abs(p1_value - p2_value) > 2*options.ABS_TOL:
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
+
+        # And we also check that the points it gave us belong to the
+        # cone, just in case...
+        if (p1_optimal not in self._K) or (p2_optimal not in self._K):
+            printing.options['dformat'] = options.DEBUG_FLOAT_FORMAT
+            raise GameUnsolvableException(self, soln_dict)
 
-        except (PoorScalingException, GameUnsolvableException):
-            # Ok, that didn't work. Let's try it with the default
-            # tolerance, and whatever happens, happens.
-            return self._try_solution(options.ABS_TOL)
+        # For the game value, we could use any of:
+        #
+        #   * p1_value
+        #   * p2_value
+        #   * (p1_value + p2_value)/2
+        #   * the game payoff
+        #
+        # We want the game value to be the payoff, however, so it
+        # makes the most sense to just use that, even if it means we
+        # can't test the fact that p1_value/p2_value are close to the
+        # payoff.
+        payoff = self.payoff(p1_optimal, p2_optimal)
+        return Solution(payoff, p1_optimal, p2_optimal)
 
 
     def condition(self):
@@ -837,7 +1036,7 @@ class SymmetricLinearGame:
         True
 
         """
-        return (condition_number(self._G()) + condition_number(self._A()))/2
+        return (condition_number(self._G()) + condition_number(self.A()))/2
 
 
     def dual(self):
@@ -873,10 +1072,10 @@ class SymmetricLinearGame:
               Condition((L, K, e1, e2)) = 44.476...
 
         """
-        # We pass ``self._L`` right back into the constructor, because
+        # We pass ``self.L()`` right back into the constructor, because
         # it will be transposed there. And keep in mind that ``self._K``
         # is its own dual.
-        return SymmetricLinearGame(self._L,
-                                   self._K,
-                                   self._e2,
-                                   self._e1)
+        return SymmetricLinearGame(self.L(),
+                                   self.K(),
+                                   self.e2(),
+                                   self.e1())